×

\(\mathrm{AdS}_{3}\) holography for 1/4 and 1/8 BPS geometries. (English) Zbl 1388.83659

Summary: Recently a new class of 1/8-BPS regular geometries in type IIB string theory was constructed in [I. Bena et al., J. High Energy Phys. 2015, No. 5, Paper No. 110, 55 p. (2015; Zbl 1388.83739)]. In this paper we provide a precise description of the semiclassical states dual, in the AdS/CFT sense, to these geometries. In explicit examples we show that the holographic 1-point functions and the Ryu-Takayanagi’s Entanglement Entropy for a single small interval match the corresponding CFT calculations performed by using the proposed dual states. We also discuss several new examples of such precision holography analysis in the 1/4-BPS sector and provide an explicit proof that the small interval derivation of the Entanglement Entropy used in [the first and the third author, “Entanglement entropy and D1–D5 geometries”, Phys. Rev. D 90, No. 6, Article ID 066004, 12 p. (2014; doi:10.1103/PhysRevD.90.066004)] is fully covariant.

MSC:

83E30 String and superstring theories in gravitational theory
83C57 Black holes
81T20 Quantum field theory on curved space or space-time backgrounds

Citations:

Zbl 1388.83739

References:

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE]. · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[2] A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett.B 379 (1996) 99 [hep-th/9601029] [INSPIRE]. · Zbl 1376.83026 · doi:10.1016/0370-2693(96)00345-0
[3] C.G. Callan and J.M. Maldacena, D-brane approach to black hole quantum mechanics, Nucl. Phys.B 472 (1996) 591 [hep-th/9602043] [INSPIRE]. · Zbl 0925.83041 · doi:10.1016/0550-3213(96)00225-8
[4] M. Baggio, J. de Boer and K. Papadodimas, A non-renormalization theorem for chiral primary 3-point functions, JHEP07 (2012) 137 [arXiv:1203.1036] [INSPIRE]. · Zbl 1397.83176 · doi:10.1007/JHEP07(2012)137
[5] I. Kanitscheider, K. Skenderis and M. Taylor, Holographic anatomy of fuzzballs, JHEP04 (2007) 023 [hep-th/0611171] [INSPIRE]. · doi:10.1088/1126-6708/2007/04/023
[6] I. Kanitscheider, K. Skenderis and M. Taylor, Fuzzballs with internal excitations, JHEP06 (2007) 056 [arXiv:0704.0690] [INSPIRE]. · doi:10.1088/1126-6708/2007/06/056
[7] M. Taylor, Matching of correlators in AdS3/CFT2, JHEP06 (2008) 010 [arXiv:0709.1838] [INSPIRE]. · doi:10.1088/1126-6708/2008/06/010
[8] S. Giusto, S.D. Mathur and A. Saxena, Dual geometries for a set of 3-charge microstates, Nucl. Phys.B 701 (2004) 357 [hep-th/0405017] [INSPIRE]. · Zbl 1124.81306 · doi:10.1016/j.nuclphysb.2004.09.001
[9] S. Giusto, S.D. Mathur and A. Saxena, 3-charge geometries and their CFT duals, Nucl. Phys.B 710 (2005) 425 [hep-th/0406103] [INSPIRE]. · Zbl 1115.81385 · doi:10.1016/j.nuclphysb.2005.01.009
[10] J. Ford, S. Giusto and A. Saxena, A class of BPS time-dependent 3-charge microstates from spectral flow, Nucl. Phys.B 790 (2008) 258 [hep-th/0612227] [INSPIRE]. · Zbl 1151.83032 · doi:10.1016/j.nuclphysb.2007.09.008
[11] I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev.D 74 (2006) 066001 [hep-th/0505166] [INSPIRE].
[12] P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP06 (2006) 007 [hep-th/0505167] [INSPIRE]. · doi:10.1088/1126-6708/2006/06/007
[13] I. Bena, C.-W. Wang and N.P. Warner, The foaming three-charge black hole, Phys. Rev.D 75 (2007) 124026 [hep-th/0604110] [INSPIRE].
[14] I. Bena, C.-W. Wang and N.P. Warner, Mergers and typical black hole microstates, JHEP11 (2006) 042 [hep-th/0608217] [INSPIRE]. · doi:10.1088/1126-6708/2006/11/042
[15] I. Bena, S. Giusto, R. Russo, M. Shigemori and N.P. Warner, Habemus superstratum! A constructive proof of the existence of superstrata, JHEP05 (2015) 110 [arXiv:1503.01463] [INSPIRE]. · Zbl 1388.83739 · doi:10.1007/JHEP05(2015)110
[16] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.06 (2004) P06002 [hep-th/0405152] [INSPIRE]. · Zbl 1082.82002
[17] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE]. · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[18] S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP08 (2006) 045 [hep-th/0605073] [INSPIRE]. · doi:10.1088/1126-6708/2006/08/045
[19] S. Giusto and R. Russo, Entanglement entropy and D1-D5 geometries, Phys. Rev.D 90 (2014) 066004 [arXiv:1405.6185] [INSPIRE].
[20] V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP07 (2007) 062 [arXiv:0705.0016] [INSPIRE]. · doi:10.1088/1126-6708/2007/07/062
[21] Z. Carson, S. Hampton, S.D. Mathur and D. Turton, Effect of the deformation operator in the D1-D5 CFT, JHEP01 (2015) 071 [arXiv:1410.4543] [INSPIRE]. · doi:10.1007/JHEP01(2015)071
[22] A. Jevicki, M. Mihailescu and S. Ramgoolam, Gravity from CFT on SN(X): symmetries and interactions, Nucl. Phys.B 577 (2000) 47 [hep-th/9907144] [INSPIRE]. · Zbl 1056.81562 · doi:10.1016/S0550-3213(00)00147-4
[23] O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox, Nucl. Phys.B 623 (2002) 342 [hep-th/0109154] [INSPIRE]. · Zbl 1036.83503 · doi:10.1016/S0550-3213(01)00620-4
[24] O. Lunin, S.D. Mathur and A. Saxena, What is the gravity dual of a chiral primary?, Nucl. Phys.B 655 (2003) 185 [hep-th/0211292] [INSPIRE]. · Zbl 1009.83037 · doi:10.1016/S0550-3213(03)00081-6
[25] O. Lunin, J.M. Maldacena and L. Maoz, Gravity solutions for the D1-D5 system with angular momentum, hep-th/0212210 [INSPIRE].
[26] K. Skenderis and M. Taylor, Fuzzball solutions and D1-D5 microstates, Phys. Rev. Lett.98 (2007) 071601 [hep-th/0609154] [INSPIRE]. · Zbl 1228.81243 · doi:10.1103/PhysRevLett.98.071601
[27] I. Bena, S. Giusto, M. Shigemori and N.P. Warner, Supersymmetric solutions in six dimensions: a linear structure, JHEP03 (2012) 084 [arXiv:1110.2781] [INSPIRE]. · Zbl 1309.81197 · doi:10.1007/JHEP03(2012)084
[28] S. Giusto, L. Martucci, M. Petrini and R. Russo, 6D microstate geometries from 10D structures, Nucl. Phys.B 876 (2013) 509 [arXiv:1306.1745] [INSPIRE]. · Zbl 1284.83161 · doi:10.1016/j.nuclphysb.2013.08.018
[29] S. Giusto and R. Russo, Superdescendants of the D1-D5 CFT and their dual 3-charge geometries, JHEP03 (2014) 007 [arXiv:1311.5536] [INSPIRE]. · doi:10.1007/JHEP03(2014)007
[30] P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory, J. Stat. Mech.11 (2009) P11001 [arXiv:0905.2069] [INSPIRE]. · Zbl 1456.81360 · doi:10.1088/1742-5468/2009/11/P11001
[31] P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory II, J. Stat. Mech.01 (2011) P01021 [arXiv:1011.5482] [INSPIRE]. · Zbl 1456.81361
[32] O. Lunin and S.D. Mathur, Correlation functions for MN/SNorbifolds, Commun. Math. Phys.219 (2001) 399 [hep-th/0006196] [INSPIRE]. · Zbl 0980.81045 · doi:10.1007/s002200100431
[33] O. Lunin and S.D. Mathur, Three point functions for MN/SNorbifolds with N = 4 supersymmetry, Commun. Math. Phys.227 (2002) 385 [hep-th/0103169] [INSPIRE]. · Zbl 1004.81029 · doi:10.1007/s002200200638
[34] S.G. Avery, B.D. Chowdhury and S.D. Mathur, Deforming the D1-D5 CFT away from the orbifold point, JHEP06 (2010) 031 [arXiv:1002.3132] [INSPIRE]. · Zbl 1290.81097 · doi:10.1007/JHEP06(2010)031
[35] S.G. Avery, B.D. Chowdhury and S.D. Mathur, Excitations in the deformed D1-D5 CFT, JHEP06 (2010) 032 [arXiv:1003.2746] [INSPIRE]. · Zbl 1290.81096 · doi:10.1007/JHEP06(2010)032
[36] B.A. Burrington, A.W. Peet and I.G. Zadeh, Twist-nontwist correlators in MN/SNorbifold CFTs, Phys. Rev.D 87 (2013) 106008 [arXiv:1211.6689] [INSPIRE].
[37] B.A. Burrington, A.W. Peet and I.G. Zadeh, Operator mixing for string states in the D1-D5 CFT near the orbifold point, Phys. Rev.D 87 (2013) 106001 [arXiv:1211.6699] [INSPIRE].
[38] Z. Carson, S. Hampton, S.D. Mathur and D. Turton, Effect of the twist operator in the D1-D5 CFT, JHEP08 (2014) 064 [arXiv:1405.0259] [INSPIRE]. · doi:10.1007/JHEP08(2014)064
[39] Z. Carson, S.D. Mathur and D. Turton, Bogoliubov coefficients for the twist operator in the D1-D5 CFT, Nucl. Phys.B 889 (2014) 443 [arXiv:1406.6977] [INSPIRE]. · Zbl 1326.81173 · doi:10.1016/j.nuclphysb.2014.10.018
[40] B.A. Burrington, S.D. Mathur, A.W. Peet and I.G. Zadeh, Analyzing the squeezed state generated by a twist deformation, Phys. Rev.D 91 (2015) 124072 [arXiv:1410.5790] [INSPIRE].
[41] C.T. Asplund and S.G. Avery, Evolution of entanglement entropy in the D1-D5 brane system, Phys. Rev.D 84 (2011) 124053 [arXiv:1108.2510] [INSPIRE].
[42] S.D. Mathur, A. Saxena and Y.K. Srivastava, Constructing ‘hair’ for the three charge hole, Nucl. Phys.B 680 (2004) 415 [hep-th/0311092] [INSPIRE]. · Zbl 1036.83016 · doi:10.1016/j.nuclphysb.2003.12.022
[43] J. de Boer, Six-dimensional supergravity on S3 × AdS3and 2D conformal field theory, Nucl. Phys.B 548 (1999) 139 [hep-th/9806104] [INSPIRE]. · Zbl 0944.83032 · doi:10.1016/S0550-3213(99)00160-1
[44] J. de Boer, Large-N elliptic genus and AdS/CFT correspondence, JHEP05 (1999) 017 [hep-th/9812240] [INSPIRE]. · Zbl 1017.81041 · doi:10.1088/1126-6708/1999/05/017
[45] S. Giusto, O. Lunin, S.D. Mathur and D. Turton, D1-D5-P microstates at the cap, JHEP02 (2013) 050 [arXiv:1211.0306] [INSPIRE]. · doi:10.1007/JHEP02(2013)050
[46] S.D. Mathur, The information paradox: a pedagogical introduction, Class. Quant. Grav.26 (2009) 224001 [arXiv:0909.1038] [INSPIRE]. · Zbl 1181.83129 · doi:10.1088/0264-9381/26/22/224001
[47] I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys.755 (2008) 1 [hep-th/0701216] [INSPIRE]. · Zbl 1155.83301 · doi:10.1007/978-3-540-79523-0_1
[48] K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept.467 (2008) 117 [arXiv:0804.0552] [INSPIRE]. · doi:10.1016/j.physrep.2008.08.001
[49] K. Skenderis and M. Taylor, Kaluza-Klein holography, JHEP05 (2006) 057 [hep-th/0603016] [INSPIRE]. · doi:10.1088/1126-6708/2006/05/057
[50] K. Skenderis and M. Taylor, Holographic Coulomb branch vevs, JHEP08 (2006) 001 [hep-th/0604169] [INSPIRE]. · doi:10.1088/1126-6708/2006/08/001
[51] K. Skenderis and M. Taylor, Anatomy of bubbling solutions, JHEP09 (2007) 019 [arXiv:0706.0216] [INSPIRE]. · doi:10.1088/1126-6708/2007/09/019
[52] V. Balasubramanian, J. de Boer, V. Jejjala and J. Simón, The library of Babel: on the origin of gravitational thermodynamics, JHEP12 (2005) 006 [hep-th/0508023] [INSPIRE].
[53] V. Balasubramanian, B. Czech, V.E. Hubeny, K. Larjo, M. Rangamani and J. Simón, Typicality versus thermality: an analytic distinction, Gen. Rel. Grav.40 (2008) 1863 [hep-th/0701122] [INSPIRE]. · Zbl 1152.83371 · doi:10.1007/s10714-008-0606-8
[54] N. Lashkari and J. Simón, From state distinguishability to effective bulk locality, JHEP06 (2014) 038 [arXiv:1402.4829] [INSPIRE]. · doi:10.1007/JHEP06(2014)038
[55] V. Balasubramanian, B.D. Chowdhury, B. Czech and J. de Boer, Entwinement and the emergence of spacetime, JHEP01 (2015) 048 [arXiv:1406.5859] [INSPIRE]. · Zbl 1388.83633 · doi:10.1007/JHEP01(2015)048
[56] C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Holographic entanglement entropy from 2D CFT: heavy states and local quenches, JHEP02 (2015) 171 [arXiv:1410.1392] [INSPIRE]. · Zbl 1388.83084 · doi:10.1007/JHEP02(2015)171
[57] A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro conformal blocks and thermality from classical background fields, arXiv:1501.05315 [INSPIRE]. · Zbl 1388.83239
[58] E. Perlmutter, Virasoro conformal blocks in closed form, JHEP08 (2015) 088 [arXiv:1502.07742] [INSPIRE]. · Zbl 1388.81690 · doi:10.1007/JHEP08(2015)088
[59] P. Caputa, V. Jejjala and H. Soltanpanahi, Entanglement entropy of extremal BTZ black holes, Phys. Rev.D 89 (2014) 046006 [arXiv:1309.7852] [INSPIRE].
[60] S.D. Mathur and D. Turton, Microstates at the boundary of AdS, JHEP05 (2012) 014 [arXiv:1112.6413] [INSPIRE]. · doi:10.1007/JHEP05(2012)014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.