×

Deforming symmetric product orbifolds: a tale of moduli and higher spin currents. (English) Zbl 1522.81182

Summary: We analyze how deforming symmetric product orbifolds of two-dimensional \(\mathcal{N} = 2\) conformal field theories by an exactly marginal operator lifts higher spin currents present at the orbifold point. We find on the one hand that these currents are universally lifted regardless of the underlying CFT. On the other hand the details of the lifting are surprisingly non-universal, with dependence on the central charge of the underlying CFT and the specific marginal operator in use. In the context of the AdS/CFT correspondence, our results illustrate the mechanism by which the stringy spectrum turns into a supergravity spectrum when moving through the moduli space. They also provide further evidence that symmetric product orbifolds of \(\mathcal{N} = 2\) minimal models are holographic.

MSC:

81T11 Higher spin theories
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
83E30 String and superstring theories in gravitational theory
81T60 Supersymmetric field theories in quantum mechanics
83C57 Black holes

References:

[1] Maldacena, JM, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys., 38, 1113 (1999) · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[2] Dijkgraaf, R., Instanton strings and hyper-Kähler geometry, Nucl. Phys. B, 543, 545 (1999) · Zbl 1097.58503 · doi:10.1016/S0550-3213(98)00869-4
[3] Giveon, A.; Kutasov, D.; Seiberg, N., Comments on string theory on AdS_3, Adv. Theor. Math. Phys., 2, 733 (1998) · Zbl 1041.81575 · doi:10.4310/ATMP.1998.v2.n4.a3
[4] Seiberg, N.; Witten, E., The D1/D5 system and singular CFT, JHEP, 04, 017 (1999) · Zbl 0953.81076 · doi:10.1088/1126-6708/1999/04/017
[5] Argurio, R.; Giveon, A.; Shomer, A., Superstrings on AdS_3and symmetric products, JHEP, 12, 003 (2000) · Zbl 0990.81610 · doi:10.1088/1126-6708/2000/12/003
[6] David, JR; Mandal, G.; Wadia, SR, Microscopic formulation of black holes in string theory, Phys. Rept., 369, 549 (2002) · Zbl 0998.83032 · doi:10.1016/S0370-1573(02)00271-5
[7] Gaberdiel, MR; Gopakumar, R., Higher spins & strings, JHEP, 11, 044 (2014) · Zbl 1333.81331 · doi:10.1007/JHEP11(2014)044
[8] Giribet, G.; Hull, C.; Kleban, M.; Porrati, M.; Rabinovici, E., Superstrings on AdS_3at ‖ = 1, JHEP, 08, 204 (2018) · Zbl 1396.83049 · doi:10.1007/JHEP08(2018)204
[9] Eberhardt, L.; Gaberdiel, MR; Gopakumar, R., The worldsheet dual of the symmetric product CFT, JHEP, 04, 103 (2019) · Zbl 1415.83055 · doi:10.1007/JHEP04(2019)103
[10] Pakman, A.; Rastelli, L.; Razamat, SS, Diagrams for symmetric product orbifolds, JHEP, 10, 034 (2009) · doi:10.1088/1126-6708/2009/10/034
[11] A. Pakman, L. Rastelli and S.S. Razamat, Extremal correlators and Hurwitz numbers in symmetric product orbifolds, Phys. Rev. D80 (2009) 086009 [arXiv:0905.3451] [INSPIRE].
[12] Keller, CA, Phase transitions in symmetric orbifold CFTs and universality, JHEP, 03, 114 (2011) · Zbl 1301.81223 · doi:10.1007/JHEP03(2011)114
[13] A. Belin, C.A. Keller and A. Maloney, String universality for permutation orbifolds, Phys. Rev. D91 (2015) 106005 [arXiv:1412.7159] [INSPIRE]. · Zbl 1357.81150
[14] Haehl, FM; Rangamani, M., Permutation orbifolds and holography, JHEP, 03, 163 (2015) · Zbl 1388.83661 · doi:10.1007/JHEP03(2015)163
[15] A. Belin, C.A. Keller and A. Maloney, Permutation orbifolds in the large N limit, arXiv:1509.01256 [INSPIRE]. · Zbl 1357.81150
[16] Avery, SG; Chowdhury, BD; Mathur, SD, Deforming the D1D5 CFT away from the orbifold point, JHEP, 06, 031 (2010) · Zbl 1290.81097 · doi:10.1007/JHEP06(2010)031
[17] Gaberdiel, MR; Peng, C.; Zadeh, IG, Higgsing the stringy higher spin symmetry, JHEP, 10, 101 (2015) · Zbl 1388.81814 · doi:10.1007/JHEP10(2015)101
[18] C.A. Keller and I.G. Zadeh, Conformal perturbation theory for twisted fields, J. Phys. A53 (2020) 095401 [arXiv:1907.08207] [INSPIRE]. · Zbl 1514.81231
[19] Guo, B.; Mathur, SD, Lifting at higher levels in the D1D5 CFT, JHEP, 11, 145 (2020) · doi:10.1007/JHEP11(2020)145
[20] Benjamin, N.; Keller, CA; Zadeh, IG, Lifting 1/4-BPS states in AdS_3 × S^3 × T^4, JHEP, 10, 089 (2021) · Zbl 1476.83149 · doi:10.1007/JHEP10(2021)089
[21] Benjamin, N.; Kachru, S.; Keller, CA; Paquette, NM, Emergent space-time and the supersymmetric index, JHEP, 05, 158 (2016) · Zbl 1388.81771 · doi:10.1007/JHEP05(2016)158
[22] Belin, A.; Benjamin, N.; Castro, A.; Harrison, SM; Keller, CA, N = 2 minimal models: a holographic needle in a symmetric orbifold haystack, SciPost Phys., 8, 084 (2020) · doi:10.21468/SciPostPhys.8.6.084
[23] Heemskerk, I.; Penedones, J.; Polchinski, J.; Sully, J., Holography from conformal field theory, JHEP, 10, 079 (2009) · doi:10.1088/1126-6708/2009/10/079
[24] Afkhami-Jeddi, N.; Hartman, T.; Kundu, S.; Tajdini, A., Einstein gravity 3-point functions from conformal field theory, JHEP, 12, 049 (2017) · Zbl 1383.83024 · doi:10.1007/JHEP12(2017)049
[25] Meltzer, D.; Perlmutter, E., Beyond a = c: gravitational couplings to matter and the stress tensor OPE, JHEP, 07, 157 (2018) · Zbl 1395.83092 · doi:10.1007/JHEP07(2018)157
[26] Belin, A.; Hofman, DM; Mathys, G., Einstein gravity from ANEC correlators, JHEP, 08, 032 (2019) · Zbl 1421.83010 · doi:10.1007/JHEP08(2019)032
[27] Kologlu, M.; Kravchuk, P.; Simmons-Duffin, D.; Zhiboedov, A., Shocks, superconvergence, and a stringy equivalence principle, JHEP, 11, 096 (2020) · Zbl 1456.83028 · doi:10.1007/JHEP11(2020)096
[28] Hartman, T.; Keller, CA; Stoica, B., Universal spectrum of 2d conformal field theory in the large c limit, JHEP, 09, 118 (2014) · Zbl 1333.81368 · doi:10.1007/JHEP09(2014)118
[29] Belin, A.; de Boer, J.; Kruthoff, J.; Michel, B.; Shaghoulian, E.; Shyani, M., Universality of sparse d > 2 conformal field theory at large N, JHEP, 03, 067 (2017) · Zbl 1377.81154 · doi:10.1007/JHEP03(2017)067
[30] Belin, A.; Freivogel, B.; Jefferson, R.; Kabir, L., Sub-AdS scale locality in AdS_3/CFT_2, JHEP, 04, 147 (2017) · Zbl 1378.81106 · doi:10.1007/JHEP04(2017)147
[31] Kawai, T.; Yamada, Y.; Yang, S-K, Elliptic genera and N = 2 superconformal field theory, Nucl. Phys. B, 414, 191 (1994) · Zbl 0980.58500 · doi:10.1016/0550-3213(94)90428-6
[32] M. Eichler and D. Zagier, The theory of Jacobi forms, Birkhäuser, Boston, MA, U.S.A. (2013). · Zbl 0554.10018
[33] Belin, A.; Castro, A.; Gomes, J.; Keller, CA, Siegel modular forms and black hole entropy, JHEP, 04, 057 (2017) · Zbl 1378.81105 · doi:10.1007/JHEP04(2017)057
[34] Belin, A.; Castro, A.; Gomes, J.; Keller, CA, Siegel paramodular forms and sparseness in AdS_3/CFT_2, JHEP, 11, 037 (2018) · Zbl 1404.83131 · doi:10.1007/JHEP11(2018)037
[35] A. Belin, A. Castro, C.A. Keller and B.J. Mühlmann, Siegel paramodular forms from exponential lifts: slow versus fast growth, arXiv:1910.05353 [INSPIRE].
[36] Belin, A.; Castro, A.; Keller, CA; Mühlmann, B., The holographic landscape of symmetric product orbifolds, JHEP, 01, 111 (2020) · Zbl 1434.83122 · doi:10.1007/JHEP01(2020)111
[37] C.A. Keller and J.M. Quinones, On the space of slow growing weak Jacobi forms, arXiv:2011.02611 [INSPIRE]. · Zbl 1503.11081
[38] L.J. Dixon, Some world sheet properties of superstring compactifications, on orbifolds and otherwise, in Summer workshop in high-energy physics and cosmology, (1987) [INSPIRE].
[39] Gukov, S.; Martinec, E.; Moore, GW; Strominger, A., The search for a holographic dual to AdS_3× S^3× S^3× S^1, Adv. Theor. Math. Phys., 9, 435 (2005) · Zbl 1121.81106 · doi:10.4310/ATMP.2005.v9.n3.a3
[40] C.A. Keller and I.G. Zadeh, Lifting \(\frac{1}{4} \)-BPS states on K3 and Mathieu moonshine, Commun. Math. Phys.377 (2020) 225 [arXiv:1905.00035] [INSPIRE]. · Zbl 1441.83021
[41] Lunin, O.; Mathur, SD, Correlation functions for M^N/S_Norbifolds, Commun. Math. Phys., 219, 399 (2001) · Zbl 0980.81045 · doi:10.1007/s002200100431
[42] Lunin, O.; Mathur, SD, Three point functions for M^N/S_Norbifolds with N = 4 supersymmetry, Commun. Math. Phys., 227, 385 (2002) · Zbl 1004.81029 · doi:10.1007/s002200200638
[43] L.J. Dixon, D. Friedan, E.J. Martinec and S.H. Shenker, The conformal field theory of orbifolds, Nucl. Phys. B282 (1987) 13 [INSPIRE].
[44] P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A42 (2009) 504005 [arXiv:0905.4013] [INSPIRE]. · Zbl 1179.81026
[45] A. Klemm and M.G. Schmidt, Orbifolds by cyclic permutations of tensor product conformal field theories, Phys. Lett. B245 (1990) 53 [INSPIRE].
[46] M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].
[47] Elitzur, S.; Feinerman, O.; Giveon, A.; Tsabar, D., String theory on AdS_3× S^3× S^3× S^1, Phys. Lett. B, 449, 180 (1999) · Zbl 1058.81649 · doi:10.1016/S0370-2693(99)00101-X
[48] W. Boucher, D. Friedan and A. Kent, Determinant formulae and unitarity for the N = 2 superconformal algebras in two-dimensions or exact results on string compactification, Phys. Lett. B172 (1986) 316 [INSPIRE]. · Zbl 1174.81319
[49] P. Di Vecchia, J.L. Petersen, M. Yu and H.B. Zheng, Explicit construction of unitary representations of the N = 2 superconformal algebra, Phys. Lett. B174 (1986) 280 [INSPIRE].
[50] R. Blumenhagen and E. Plauschinn, Introduction to conformal field theory: with applications to string theory, Lect. Notes Phys.779 (2009) 1 [INSPIRE]. · Zbl 1175.81001
[51] R. Blumenhagen, D. Lüst and S. Theisen, Basic concepts of string theory, Springer, Heidelberg, Germany (2013) [INSPIRE]. · Zbl 1262.81001
[52] A. Schwimmer and N. Seiberg, Comments on the N = 2, N = 3, N = 4 superconformal algebras in two-dimensions, Phys. Lett. B184 (1987) 191 [INSPIRE].
[53] I.V. Melnikov, An introduction to two-dimensional quantum field theory with (0, 2) supersymmetry, Lect. Notes Phys.951 (2019) 1 [INSPIRE]. · Zbl 1417.81006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.