×

Model order reduction of flow based on a modular geometrical approximation of blood vessels. (English) Zbl 1506.76228

Summary: We are interested in a reduced order method for the efficient simulation of blood flow in arteries. The blood dynamics is modeled by means of the incompressible Navier-Stokes equations. Our algorithm is based on an approximated domain-decomposition of the target geometry into a number of subdomains obtained from the parametrized deformation of geometrical building blocks (e.g., straight tubes and model bifurcations). On each of these building blocks, we build a set of spectral functions by Proper Orthogonal Decomposition of a large number of snapshots of finite element solutions (offline phase). The global solution of the Navier-Stokes equations on a target geometry is then found by coupling linear combinations of these local basis functions by means of spectral Lagrange multipliers (online phase). Being that the number of reduced degrees of freedom is considerably smaller than their finite element counterpart, this approach allows us to significantly decrease the size of the linear system to be solved in each iteration of the Newton-Raphson algorithm. We achieve large speedups with respect to the full order simulation (in our numerical experiments, the gain is at least of one order of magnitude and grows inversely with respect to the reduced basis size), whilst still retaining satisfactory accuracy for most cardiovascular simulations.

MSC:

76Z05 Physiological flows
76D05 Navier-Stokes equations for incompressible viscous fluids

References:

[1] Bao, G.; Bazilevs, Y.; Chung, J.-H.; Decuzzi, P.; Espinosa, H. D.; Ferrari, M.; Gao, H.; Hossain, S. S.; Hughes, T. J.R.; Kamm, R. D., USNCTAM perspectives on mechanics in medicine, J. R. Soc. Interface, 11, 97, Article 20140301 pp. (2014)
[2] Figueroa, C. A.; Taylor, C. A.; Marsden, A. L., Blood Flow, 1-31 (2017), American Cancer Society
[3] Sankaran, S.; Kim, H. J.; Choi, G.; Taylor, C. A., Uncertainty quantification in coronary blood flow simulations: impact of geometry, boundary conditions and blood viscosity, J. Biomech., 49, 12, 2540-2547 (2016)
[4] Sankaran, S.; Marsden, A. L., A stochastic collocation method for uncertainty quantification and propagation in cardiovascular simulations, J. Biomech. Eng., 133, 3 (2011)
[5] Chen, P.; Quarteroni, A.; Rozza, G., Simulation-based uncertainty quantification of human arterial network hemodynamics, Int. J. Numer. Methods Biomed. Eng., 29, 6, 698-721 (2013)
[6] Malossi, A. C.I.; Bonnemain, J., Numerical comparison and calibration of geometrical multiscale models for the simulation of arterial flows, Cardiovasc. Eng. Technol., 4, 4, 440-463 (2013)
[7] Malossi, A. C.I., Partitioned Solution of Geometrical Multiscale Problems for the Cardiovascular System: Models, Algorithms, and Applications (2012), École Polytechnique Fédérale de Lausanne: École Polytechnique Fédérale de Lausanne Lausanne, Switzerland, (Ph.D. thesis, Ph. D. thesis)
[8] Marsden, A. L.; Esmaily-Moghadam, M., Multiscale modeling of cardiovascular flows for clinical decision support, Appl. Mech. Rev., 67, 3, Article 030804 pp. (2015)
[9] Blanco, P. J.; Bulant, C. A.; Müller, L. O.; Talou, G. D.M.; Bezerra, C. G.; Lemos, P. A.; Feijóo, R. A., Comparison of 1D and 3D models for the estimation of fractional flow reserve, Sci. Rep., 8, 1, 1-12 (2018)
[10] Malossi, A. C.I.; Blanco, P. J.; Crosetto, P.; Deparis, S.; Quarteroni, A., Implicit coupling of one-dimensional and three-dimensional blood flow models with compliant vessels, Multiscale Model. Simul., 11, 2, 474-506 (2013) · Zbl 1310.92017
[11] Sankaran, S.; Moghadam, M. E.; Kahn, A. M.; Tseng, E. E.; Guccione, J. M.; Marsden, A. L., Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery, Ann. Biomed. Eng., 40, 10, 2228-2242 (2012)
[12] Moghadam, M. E.; Vignon-Clementel, I. E.; Figliola, R.; Marsden, A. L., A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations, J. Comput. Phys., 244, 63-79 (2013) · Zbl 1377.76041
[13] Perotto, S.; Ern, A.; Veneziani, A., Hierarchical local model reduction for elliptic problems: a domain decomposition approach, Multiscale Model. Simul., 8, 4, 1102-1127 (2010) · Zbl 1206.65251
[14] Guzzetti, S.; Perotto, P.; Veneziani, A., Hierarchical model reduction for incompressible fluids in pipes, Internat. J. Numer. Methods Engrg., 114, 5, 469-500 (2018) · Zbl 07878343
[15] Mansilla Alvarez, L. A.; Blanco, P. J.; Bulant, C. A.; Dari, E.; Veneziani, A.; Feijóo, R. A., Transversally enriched pipe element method (tepem): An effective numerical approach for blood flow modeling, Int. J. Numer. Methods Biomed. Eng., 33, 4 (2017)
[16] Mansilla Alvarez, L. A.; Blanco, P. J.; Bulant, C. A.; Feijóo, R. A., Towards fast hemodynamic simulations in large-scale circulatory networks, Comput. Methods Appl. Mech. Engrg., 344, 734-765 (2019) · Zbl 1440.76170
[17] Guzzetti, S.; Mansilla Alvarez, L. A.; Blanco, P. J.; Carlberg, K.; Veneziani, A., Propagating uncertainties in large-scale hemodynamics models via network uncertainty quantification and reduced-order modeling, Comput. Methods Appl. Mech. Engrg., 358, Article 112626 pp. (2020) · Zbl 1441.76147
[18] Maday, Y.; Rønquist, E. M., The reduced basis element method: application to a thermal fin problem, SIAM J. Sci. Comput., 26, 1, 240-258 (2004) · Zbl 1077.65120
[19] Maday, Y.; Rønquist, E. M., A reduced-basis element method, C. R. Math., 335, 2, 195-200 (2002) · Zbl 1006.65128
[20] Iapichino, L.; Quarteroni, A.; Rozza, G., A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks, Comput. Methods Appl. Mech. Engrg., 221, 63-82 (2012) · Zbl 1253.76139
[21] Iapichino, L.; Rozza, G.; Quarteroni, A., Reduced basis (element) methods for the study of parametrized cardiovascular geometries and networks (2010)
[22] Iapichino, L.; Quarteroni, A.; Rozza, G.; Volkwein, S., Reduced basis method for the Stokes equations in decomposable domains using greedy optimization (2014)
[23] Løvgren, E.; Maday, Y.; Ronquist, E. M., A reduced basis element method for complex flow systems, (ECCOMAS CFD 2006: Proceedings of the European Conference on Computational Fluid Dynamics, Egmond Aan Zee, the Netherlands, September 5-8, 2006 (2006), Delft University of Technology; European Community on Computational Methods in Applied Sciences (ECCOMAS))
[24] Løvgren, E.; Maday, Y.; Rønquist, E. M., A reduced basis element method for the steady Stokes problem: Application to hierarchical flow systems, Model. Identif. Control, 27, 2, 79-94 (2006)
[25] Deparis, S.; Iubatti, A.; Pegolotti, L., Coupling non-conforming discretizations of PDEs by spectral approximation of the Lagrange multiplier space, ESAIM Math. Model. Numer. Anal., 53, 5, 1667-1694 (2019) · Zbl 1427.65391
[26] Quarteroni, A.; Manzoni, A.; Negri, F., Reduced Basis Methods for Partial Differential Equations: An Introduction, Vol. 92 (2015), Springer
[27] Hesthaven, J. S.; Rozza, G.; Stamm, B., Certified Reduced Basis Methods for Parametrized Partial Differential Equations (2016), Springer · Zbl 1329.65203
[28] Binev, P.; Cohen, A.; Dahmen, W.; DeVore, R.; Petrova, G.; Wojtaszczyk, P., Convergence rates for greedy algorithms in reduced basis methods, SIAM J. Math. Anal., 43, 3, 1457-1472 (2011) · Zbl 1229.65193
[29] Hesthaven, J. S.; Stamm, B.; Zhang, S., Efficient greedy algorithms for high-dimensional parameter spaces with applications to empirical interpolation and reduced basis methods, ESAIM Math. Model. Numer. Anal., 48, 1, 259-283 (2014) · Zbl 1292.41001
[30] Kunisch, K.; Volkwein, S., Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math., 90, 1, 117-148 (2001) · Zbl 1005.65112
[31] Rathinam, M.; Petzold, L. R., A new look at proper orthogonal decomposition, SIAM J. Numer. Anal., 41, 5, 1893-1925 (2003) · Zbl 1053.65106
[32] Kunisch, K.; Volkwein, S., Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics, SIAM J. Numer. Anal., 40, 2, 492-515 (2002) · Zbl 1075.65118
[33] Ballarin, F.; Faggiano, E.; Ippolito, S.; Manzoni, A.; Quarteroni, A.; Rozza, G.; Scrofani, R., Fast simulations of patient-specific haemodynamics of coronary artery bypass grafts based on a POD-Galerkin method and a vascular shape parametrization, J. Comput. Phys., 315, 609-628 (2016) · Zbl 1349.76173
[34] Pfaller, M.; Cruz Varona, M.; Lang, J.; Bertoglio, C.; Wall, W. A., Using parametric model order reduction for inverse analysis of large nonlinear cardiac simulations, Int. J. Numer. Methods Biomed. Eng., 36, 4, Article e3320 pp. (2020)
[35] Golub, G. H.; Van Loan, C. F., Matrix Computations, Vol. 3 (2012), JHU press
[36] Trefethen, L. N.; Bau III, D., Numerical Linear Algebra, Vol. 50 (1997), Siam · Zbl 0874.65013
[37] Barrault, M.; Maday, Y.; Nguyen, N. C.; Patera, A. T., An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, C. R. Math. Acad. Sci. Paris, 339, 9, 667-672 (2004) · Zbl 1061.65118
[38] Chaturantabut, S.; Sorensen, D. C., Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32, 5, 2737-2764 (2010) · Zbl 1217.65169
[39] Negri, F.; Manzoni, A.; Amsallem, D., Efficient model reduction of parametrized systems by matrix discrete empirical interpolation, J. Comput. Phys., 303, 431-454 (2015) · Zbl 1349.65154
[40] Boffi, D.; Brezzi, F.; Fortin, M., Mixed Finite Element Methods and Applications, Vol. 44 (2013), Springer · Zbl 1277.65092
[41] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers, Rev. Fr. Autom. Inform. Rech. Opér. Anal. Numér., 8, R2, 129-151 (1974) · Zbl 0338.90047
[42] Hood, P.; Taylor, C., Navier-Stokes equations using mixed interpolation, Finite Elem. Methods Flow Probl., 121-132 (1974)
[43] Wohlmuth, B., A mortar finite element method using dual spaces for the Lagrange multiplier, SIAM J. Numer. Anal., 38, 3, 989-1012 (2000) · Zbl 0974.65105
[44] Bernardi, C., A new nonconforming approach to domain decomposition: the mortar element method, Nonlinear Partial Equations Appl. (1989)
[45] Bernardi, C.; Maday, Y.; Rapetti, F., Basics and some applications of the mortar element method, GAMM-Mitt., 28, 2, 97-123 (2005) · Zbl 1177.65178
[46] Braess, D.; Dahmen, W.; Wieners, C., A multigrid algorithm for the mortar finite element method, SIAM J. Numer. Anal., 37, 1, 48-69 (1999) · Zbl 0942.65139
[47] Deparis, S.; Forti, D.; Gervasio, P.; Quarteroni, A., INTERNODES: an accurate interpolation-based method for coupling the Galerkin solutions of PDEs on subdomains featuring non-conforming interfaces, Comput. & Fluids, 141, 22-41 (2016) · Zbl 1390.65142
[48] Gervasio, P.; Quarteroni, A., Analysis of the Internodes Method for Non-Conforming Discretizations of Elliptic EquationsMATHICSE report (2016)
[49] Babuška, I., The finite element method with lagrangian multipliers, Numer. Math., 20, 3, 179-192 (1973) · Zbl 0258.65108
[50] Zhu, T.; Atluri, S. N., A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free galerkin method, Comput. Mech., 21, 3, 211-222 (1998) · Zbl 0947.74080
[51] Babuška, I., The finite element method with penalty, Math. Comput., 27, 122, 221-228 (1973) · Zbl 0299.65057
[52] Dunkl, C. F.; Xu, Y., Orthogonal Polynomials of Several Variables (2014), Cambridge University Press, Number 155 · Zbl 1317.33001
[53] Saad, Y.; Schultz, M. H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3, 856-869 (1986) · Zbl 0599.65018
[54] Segal, A.; Rehman, M.; Vuik, C., Preconditioners for incompressible Navier-Stokes solvers, Numer. Math.: Theory Methods Appl., 3, 3, 245-275 (2010) · Zbl 1240.65098
[55] Liu, J.; Yang, W.; Dong, M.; Marsden, A. L., The nested block preconditioning technique for the incompressible Navier-Stokes equations with emphasis on hemodynamic simulations (2019), arXiv preprint arXiv:1911.10814
[56] Saad, Y., A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14, 2, 461-469 (1993) · Zbl 0780.65022
[57] Carlberg, K.; Barone, M.; Antil, H., Galerkin v. least-squares Petrov-Galerkin projection in nonlinear model reduction, J. Comput. Phys., 330, 693-734 (2017) · Zbl 1378.65145
[58] Dal Santo, N.; Deparis, S.; Manzoni, A.; Quarteroni, A., An algebraic least squares reduced basis method for the solution of nonaffinely parametrized stokes equations, Comput. Methods Appl. Mech. Engrg., 344, 186-208 (2019) · Zbl 1440.76055
[59] Ballarin, F.; Manzoni, A.; Quarteroni, A.; Rozza, G., Supremizer stabilization of POD-Galerkin approximation of parametrized steady incompressible Navier-Stokes equations, Internat. J. Numer. Methods Engrg., 102, 5, 1136-1161 (2015) · Zbl 1352.76039
[60] Dal Santo, N.; Manzoni, A., Hyper-reduced order models for parametrized unsteady Navier-Stokes equations on domains with variable shape (2018) · Zbl 1435.65155
[61] Rozza, G., On optimization, control and shape design of an arterial bypass, Internat. J. Numer. Methods Fluids, 47, 10-11, 1411-1419 (2005) · Zbl 1155.76439
[62] Bertagna, L.; Deparis, S.; Formaggia, L.; Forti, D.; Veneziani, A., The LifeV library: engineering mathematics beyond the proof of concept (2017), arXiv preprint arXiv:1710.06596
[63] Updegrove, A.; Wilson, N. M.; Merkow, J.; Lan, H.; Marsden, A. L.; Shadden, S. C., Simvascular: an open source pipeline for cardiovascular simulation, Ann. Biomed. Eng., 45, 3, 525-541 (2017)
[64] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Hughes, T. J.R.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Engrg., 197, 1-4, 173-201 (2007) · Zbl 1169.76352
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.