×

Sequential Dirichlet-to-Neumann coupling for the mixed-dimensional wave equation. (English) Zbl 07819056

Summary: Coupling of a two-dimensional (2D) sub-model and a one-dimensional (1D) sub-model, to form a hybrid mixed-dimensional model, is considered for the linear scalar wave equation. A Dirichlet-to-Neumann (DtN) method is used to perform this coupling, which is based on enforcing the continuity of the DtN map across the 2D-1D interface. The DtN map relates the primary variable to the flux, on each side of the interface. A previously proposed DtN-coupling formulation was monolithic, namely the simulation had to be simultaneously performed with the combined 2D and 1D sub-models. In contrast, here a new sequential formulation is proposed, in which the 2D problem is solved separately, after a fundamental 1D problem is solved. Thus, in the new method the 2D-1D coupling is one-way. This has a clear advantage over the monolithic formulation, as the 2D and 1D problems can be solved using different codes, and with space and time discretizations that do not have to match at the interface. The proposed method is applied here in conjunction with a Finite Element (FE) formulation. Numerical examples demonstrate the performance of the method.

MSC:

65Nxx Numerical methods for partial differential equations, boundary value problems
74Sxx Numerical and other methods in solid mechanics
76Mxx Basic methods in fluid mechanics

Software:

F.E.M
Full Text: DOI

References:

[1] Panasenko, G. P., Method of asymptotic partial decomposition of rod structures. Int. J. Comput. Civil Struct. Eng., 57-70 (2000)
[2] Panasenko, G. P., Multi-Scale Modelling for Structures and Composites (2005), Springer: Springer Dordrecht · Zbl 1078.74002
[3] Krylov, S.; Harari, I.; Gadasi, D., Consistent loading in structural reduction procedures for beam models. Int. J. Multiscale Comput. Eng., 559-583 (2006)
[4] Harari, I.; Sokolov, I.; Krylov, S., Consistent loading for thin plates. J. Mech. Mater. Struct., 765-790 (2011)
[5] Vignon, I. E.; Taylor, C. A., Outflow boundary conditions for one-dimensional finite element modeling of blood flow and pressure waves in arteries. Wave Motion, 361-374 (2004) · Zbl 1163.74453
[6] Arbia, G.; Vignon-Clementel, I. E.; Hsia, T. Y.; Gerbeau, J. F., Modified Navier-Stokes equations for the outflow boundary conditions in hemodynamics. Eur. J. Mech. B, Fluids, 175-188 (2016) · Zbl 1408.76600
[7] Lindsey, S. E.; Vignon-Clementel, I. E.; Butcher, J. T., Assessing early cardiac outflow tract adaptive responses through combined experimental-computational manipulations. Ann. Biomed. Eng., 3227-3242 (2021)
[8] Blanco, P. J.; Pivello, M. R.; Urquiza, S. A.; Feijóo, R. A., On the potentialities of 3D-1D coupled models in hemodynamics simulations. J. Biomech., 919-930 (2009)
[9] Blanco, P. J.; Ares, G. D.; Urquiza, S. A.; Feijóo, R. A., On the effect of preload and pre-stretch on hemodynamic simulations: an integrative approach. Biomech. Model. Mechanobiol., 593-627 (2016)
[10] Ghitti, B.; Blanco, P. J.; Toro, E. F.; Muller, L. O., Construction of hybrid 1D-0D networks for efficient and accurate blood flow simulations. Int. J. Numer. Methods Fluids, 262-312 (2023) · Zbl 07847133
[11] Formaggia, L.; Gerbeau, J. F.; Nobile, F.; Quarteroni, A., On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng., 561-582 (2001) · Zbl 1007.74035
[12] Quarteroni, A.; Veneziani, A.; Vergara, C., Geometric multiscale modeling of the cardiovascular system, between theory and practice. Comput. Methods Appl. Mech. Eng., 193-252 (2016) · Zbl 1423.76528
[13] Di Gregorio, S.; Fedele, M.; Pontone, G.; Corno, A. F.; Zunino, P.; Vergara, C.; Quarteroni, A., A computational model applied to myocardial perfusion in the human heart: from large coronaries to microvasculature. J. Comput. Phys. (2021) · Zbl 07508444
[14] Blanco, P. J.; Leiva, J. S.; Buscaglia, G. C., A black-box decomposition approach for coupling heterogeneous components in hemodynamics simulations. Int. J. Numer. Methods Biomed. Eng., 408-427 (2013)
[15] Malossi, A. C.I.; Blanco, P. J.; Crosetto, P.; Deparis, S.; Quarteroni, A., Implicit coupling of one-dimensional and three-dimensional blood flow models with compliant vessels. SIAM J. Multiscale Model. Simul., 474-506 (2013) · Zbl 1310.92017
[16] Morales-Hernandez, M.; Petaccia, G.; Brufau, P.; Garcia-Navarro, P., Conservative 1D-2D coupled numerical strategies applied to river flooding: the Tiber (Rome). Appl. Math. Model., 2087-2105 (2016) · Zbl 1452.76126
[17] Martinez, C.; Sanchez, A.; Toloh, B.; Vojinovic, Z., Multi-objective evaluation of urban drainage networks using a 1D/2D flood inundation model. Water Resour. Manag., 4329-4343 (2018)
[18] Yang, S. Y.; Chang, C. H.; Hsu, C. T.; Wu, S. J., Variation of uncertainty of drainage density in flood Hazard mapping assessment with coupled 1D-2D hydrodynamics model. Nat. Hazards, 2297-2315 (2022)
[19] Leiva, J. S.; Blanco, P. J.; Buscaglia, G. C., Partitioned analysis for dimensionally-heterogeneous hydraulic networks. SIAM J. Multiscale Model. Simul., 872-903 (2011) · Zbl 1300.76011
[20] Wang, F. Y.; Xu, Y. L.; Qu, W. L., Mixed-dimensional finite element coupling for structural multi-scale simulation. Finite Elem. Anal. Des., 12-25 (2014)
[21] Panasenko, G., Method of asymptotic partial decomposition of domain for multistructures. Appl. Anal., 2771-2779 (2017) · Zbl 1386.35352
[22] Huang, Q.; Zhang, M.; Zheng, X., Compressor surge based on a 1D-3D coupled method - part 2: surge investigation. Aerosp. Sci. Technol., 289-298 (2019)
[23] Blanco, P. J.; Discacciati, M.; Quarteroni, A., Modeling dimensionally-heterogeneous problems: analysis, approximation and applications. Numer. Math., 299-335 (2011) · Zbl 1261.65128
[24] Gigante, G.; Vergara, C., Optimized Schwarz methods for the coupling of cylindrical geometries along the axial direction. ESAIM, Math. Model. Numer. Anal., 1597-1615 (2018) · Zbl 1407.65260
[25] Leiva, J. S.; Blanco, P. J.; Buscaglia, G. C., Iterative strong coupling of dimensionally heterogeneous models. Int. J. Numer. Methods Eng., 1558-1580 (2010) · Zbl 1183.76838
[26] Badia, S.; Nobile, F.; Vergara, C., Fluid-structure partitioned procedures based on Robin transmission conditions. J. Comput. Phys., 7027-7051 (2008) · Zbl 1140.74010
[27] Amar, H.; Givoli, D., Mixed-dimensional modeling of time-dependent wave problems using the Panasenko construction. J. Theor. Comput. Acoust. (2018)
[28] Amar, H.; Givoli, D., Mixed-dimensional coupling for time-dependent wave problems using the Nitsche method. Comput. Methods Appl. Mech. Eng., 213-250 (2019) · Zbl 1441.74227
[29] Rabinovich, D.; Givoli, D., Elastodynamic 2D-1D coupling using the DtN method. J. Comput. Phys. (2022) · Zbl 1537.74018
[30] Efrati, R.; Givoli, D., Hybrid 3D-2D finite element modeling for elastodynamics. Finite Elem. Anal. Des. (2022)
[31] Fontvieille, F.; Panasenko, G. P.; Pousin, J., FEM implementation for the asymptotic partial decomposition. Appl. Anal., 519-536 (2007) · Zbl 1115.65114
[32] Dolbow, J.; Harari, I., An efficient finite element method for embedded interface problems. Int. J. Numer. Methods Eng., 229-252 (2009) · Zbl 1183.76803
[33] Givoli, D., Exact representations on artificial interfaces and applications in mechanics. Appl. Mech. Rev., 333-349 (1999)
[34] Givoli, D.; Patlashenko, I., Dirichlet-to-Neumann boundary condition for time-dependent dispersive waves in three-dimensional guides. J. Comput. Phys., 339-354 (2004) · Zbl 1061.78006
[35] Yuan, J. H.; Lu, Y. Y.; Antoine, X., Modeling photonic crystals by boundary integral equations and Dirichlet-to-Neumann maps. J. Comput. Phys., 4617-4629 (2008) · Zbl 1143.78012
[36] Acosta, S.; Villamizar, V., Coupling of Dirichlet-to-Neumann boundary condition and finite difference methods in curvilinear coordinates for multiple scattering. J. Comput. Phys., 5498-5517 (2010) · Zbl 1206.65241
[37] Bourgeois, L.; Fliss, S.; Fritsch, J. F.; Hazard, C.; Recoquillay, A., Scattering in a partially open waveguide: the forward problem. IMA J. Appl. Math., 102-151 (2023) · Zbl 1532.78001
[38] Marchner, P.; Antoine, X.; Geuzaine, C.; Beriot, H., Construction and numerical assessment of local absorbing boundary conditions for heterogeneous time-harmonic acoustic problems. SIAM J. Appl. Math., 476-501 (2022) · Zbl 1486.35488
[39] Godoy, E.; Boccardo, V.; Duran, M., A Dirichlet-to-Neumann finite element method for axisymmetric elastostatics in a semi-infinite domain. J. Comput. Phys., 1-26 (2017) · Zbl 1406.65113
[40] Duran, M.; Godoy, E.; Catafau, E. R.; Toledo, P. A., Open-pit slope design using a DtN-FEM: parameter space exploration. Int. J. Rock Mech. Min. Sci. (2022)
[41] Quarteroni, A.; Valii, A., Numerical Approximation of Partial Differential Equations (2008), Springer: Springer Berlin · Zbl 1151.65339
[42] Tayeb, S.; Givoli, D., Optimal modal reduction of dynamic subsystems: extensions and improvements. Int. J. Numer. Methods Eng., 1-30 (2011) · Zbl 1217.70017
[43] Hughes, T. J.R., The Finite Element Method (2000), Dover: Dover London · Zbl 1191.74002
[44] Engquist, B.; Majda, A., Absorbing boundary conditions for the numerical simulation of waves. Math. Comput., 333-351 (1977)
[45] Patlashenko, I.; Givoli, D.; Barbone, P., Time-stepping schemes for systems of Volterra integro-differential equations. Comput. Methods Appl. Mech. Eng., 5691-5718 (2001) · Zbl 0985.65166
[46] Soares, D.; Mansur, W. J.; Von Estorff, O., An efficient time-domain FEM/BEM coupling approach based on FEM implicit Green’s functions and truncation of BEM time convolution process. Comput. Methods Appl. Mech. Eng., 1816-1826 (2007) · Zbl 1173.74442
[47] Levin, T.; Turkel, E.; Givoli, D., Obstacle identification using the TRAC algorithm with a 2nd order ABC. Int. J. Numer. Methods Eng., 61-92 (2019) · Zbl 07865205
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.