×

Optimized Schwarz methods for the coupling of cylindrical geometries along the axial direction. (English) Zbl 1407.65260

Summary: In this work, we focus on the otimized Schwarz method for circular flat interfaces and geometric heterogeneous coupling arising when cylindrical geometries are coupled along the axial direction. In the first case, we provide a convergence analysis for the diffusion-reaction problem and jumping coefficients and we apply the general optimization procedure developed in [the authors, Numer. Math. 131, No. 2, 369–404 (2015; Zbl 1326.65169)]. In the numerical simulations, we discuss how to choose the range of frequencies in the optimization and the influence of the finite element and projection errors on the convergence. In the second case, we consider the coupling between a three-dimensional and a one-dimensional diffusion-reaction problem and we develop a new optimization procedure. The numerical results highlight the suitability of the theoretical findings.

MSC:

65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs

Citations:

Zbl 1326.65169

Software:

FreeFem++

References:

[1] S. Badia, F. Nobile and C. Vergara, Fluid-structure partitioned procedures based on Robin transmission conditions. J. Comput. Phys. 227 (2008) 7027-7051. · Zbl 1140.74010 · doi:10.1016/j.jcp.2008.04.006
[2] P. Blanco, M. Discacciati and A. Quarteroni, Modeling dimensionally-heterogeneous problems: analysis, approximation and applications. Numer. Math. 119 (2011) 299-335. · Zbl 1261.65128 · doi:10.1007/s00211-011-0387-y
[3] P.J. Blanco, S. Deparis and A.C.I. Malossi, On the continuity of mean total normal stress in geometrical multiscale cardiovascular problems. J. Comput. Phys. 51 (2013) 136-155. · Zbl 1349.92046 · doi:10.1016/j.jcp.2013.05.037
[4] P.J. Blanco, R.A. Feijóo and S.A. Urquiza, A unified variational approach for coupling 3d-1d models and its blood flow applications. Comput. Methods Appl. Mech. Eng. 196 (2007) 4391-4410. · Zbl 1173.76430 · doi:10.1016/j.cma.2007.05.008
[5] V. Dolean, M.J. Gander and L. Gerardo Giorda, Optimized Schwarz Methods for Maxwell’s equations. SIAM J. Sci. Comput. 31 (2009) 2193-2213. · Zbl 1192.78044 · doi:10.1137/080728536
[6] V.J. Ervin and H. Lee, Numerical approximation of a quasi-newtonian Stokes flow problem with defective boundary conditions. SIAM J. Numer. Anal. 45 (2007) 2120-2140. · Zbl 1146.76002 · doi:10.1137/060669012
[7] L. Formaggia, J.-F. Gerbeau, F. Nobile and A. Quarteroni, On the coupling of 3D an 1D Navier-Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191 (2001) 561-582. · Zbl 1007.74035 · doi:10.1016/S0045-7825(01)00302-4
[8] L. Formaggia, J.-F. Gerbeau, F. Nobile and A. Quarteroni, Numerical treatment of defective boundary conditions for the Navier-Stokes equation. SIAM J. Numer. Anal. 40 (2002) 376-401. · Zbl 1020.35070 · doi:10.1137/S003614290038296X
[9] L. Formaggia, A. Moura and F. Nobile, On the stability of the coupling of 3D and 1D fluid-structure interaction models for blood flow simulations. ESAIM: M2AN 41 (2007) 743-769. · Zbl 1139.92009 · doi:10.1051/m2an:2007039
[10] L. Formaggia, A. Quarteroni and C. Vergara, On the physical consistency between three-dimensional and one-dimensional models in haemodynamics. J. Comput. Phys. 244 (2013) 97-112. · Zbl 1377.76042 · doi:10.1016/j.jcp.2012.08.001
[11] L. Formaggia, A. Veneziani and C. Vergara, A new approach to numerical solution of defective boundary value problems in incompressible fluid dynamics. SIAM J. Numer. Anal. 46 (2008) 2769-2794. · Zbl 1235.76025 · doi:10.1137/060672005
[12] L. Formaggia, A. Veneziani and C. Vergara, Flow rate boundary problems for an incompressible fluid in deformable domains: formulations and solution methods. Comput. Methods Appl. Mech. Eng. 199 (2009) 677-688. · Zbl 1227.74019 · doi:10.1016/j.cma.2009.10.017
[13] L. Formaggia and C. Vergara, Prescription of general defective boundary conditions in fluid-dynamics. Milan J. Math. 80 (2012) 333-350. · Zbl 1342.76040 · doi:10.1007/s00032-012-0185-8
[14] K. Galvin and H. Lee, Analysis and approximation of the cross model for quasi-newtonian flows with defective boundary conditions. Appl. Math. Comp. 222 (2013) 244-254. · Zbl 1329.76107 · doi:10.1016/j.amc.2013.07.006
[15] K. Galvin, H. Lee and L.G. Rebholz, Approximation of viscoelastic flows with defective boundary conditions. J. Non Newt. Fl. Mech. 169-170 (2012) 104-113. · doi:10.1016/j.jnnfm.2011.12.002
[16] M.J. Gander, Optimized Schwarz methods. SIAM J. Numer. Anal. 44 (2006) 699-731. · Zbl 1117.65165 · doi:10.1137/S0036142903425409
[17] M.J. Gander, F. Magoulès and F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24 (2002) 38-60. · Zbl 1021.65061 · doi:10.1137/S1064827501387012
[18] M.J. Gander and Y. Xu, Optimized Schwarz methods for circular domain decompositions with overlap. SIAM J. Numer. Anal. 52 (2014) 1981-2004. · Zbl 1304.65261 · doi:10.1137/130946125
[19] M.J. Gander and Y. Xu, Optimized Schwarz Methods with nonoverlapping circular domain decomposition. Math. Comp. 86 (2017) 637-660. · Zbl 1355.65167 · doi:10.1090/mcom/3127
[20] L. Gerardo Giorda, F. Nobile and C. Vergara, Analysis and optimization of Robin-Robin partitioned procedures in fluid-structure interaction problems. SIAM J. Numer. Anal. 48 (2010) 2091-2116. · Zbl 1392.74075 · doi:10.1137/09076605X
[21] G. Gigante, M. Pozzoli and C. Vergara, Optimized Schwarz methods for the diffusion-reaction problem with cylindrical interfaces. SIAM J. Numer. Anal. 51 (2013) 3402-3420. · Zbl 1287.65134 · doi:10.1137/120887758
[22] G. Gigante and C. Vergara, Analysis and optimization of the generalized Schwarz method for elliptic problems with application to fluid-structure interaction. Numer. Math. 131 (2015) 369-404. · Zbl 1326.65169 · doi:10.1007/s00211-014-0693-2
[23] G. Gigante and C. Vergara, Optimized Schwarz method for the fluid-structure interaction with cylindrical interfaces, edited by T. Dickopf, M.J. Gander, L. Halpern, R. Krause and L.F. Pavarino. In: Proc. of the XXII International Conference on Domain Decomposition Methods. Springer Nature Switzerland (2016) 521-529. · Zbl 1383.76377
[24] J.G. Heywood, R. Rannacher and S. Turek, Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Num. Methods Fluids 22 (1996) 325-352. · Zbl 0863.76016 · doi:10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y
[25] C. Japhet, Optimized Krylov-Ventcell method. Application to convection-diffusion problems, edited by P.E. Bjorstad, M.S. Espedal and D.E. Keyes. In: Proc. of the Ninth International Conference on Domain Decomposition Methods. Springer, Berlin (1998) 382-389.
[26] C. Japhet, N. Nataf and F. Rogier, The optimized order 2 method. Application to convection-diffusion problems. Fut. Gen. Comput. Syst. 18 (2001) 17-30. · Zbl 1050.65124 · doi:10.1016/S0167-739X(00)00072-8
[27] N. Lebedev, Special Functions and Their Applications. Courier Dover Publications, Mineola, NY, USA (1972). · Zbl 0271.33001
[28] H. Lee, Optimal control for quasi-newtonian flows with defective boundary conditions. Comput. Methods Appl. Mech. Eng. 200 (2011) 2498-2506. · Zbl 1230.76009 · doi:10.1016/j.cma.2011.04.019
[29] J.S. Leiva, P.J. Blanco and G.C. Buscaglia, Partitioned analysis for dimensionally-heterogeneous hydraulic networks. Mult. Model. Simul. 9 (2011) 872-903. · Zbl 1300.76011 · doi:10.1137/100809301
[30] P.L. Lions, On the Schwarz alternating method III, edited by T. Chan, R. Glowinki, J. Periaux and O.B. Widlund, In: Proc. of the Third International Symposium on Domain Decomposition Methods for PDE’s. Siam, Philadelphia (1990) 202-223.
[31] F. Magoulès, P. Ivanyi and B.H.V. Topping, Non-overlapping Schwarz method with optimized transmission conditions for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 193 (2004) 4797-4818. · Zbl 1112.74444 · doi:10.1016/j.cma.2004.05.004
[32] A.C.I. Malossi, P.J. Blanco, P. Crosetto, S. Deparis and A. Quarteroni, Implicit coupling of one-dimensional and three-dimensional blood flow models with compliant vessels. Multiscale Model Simul. 11 (2013) 474-506. · Zbl 1310.92017 · doi:10.1137/120867408
[33] G. Papadakis, Coupling 3d and 1d fluid-structure-interaction models for wave propagation in flexible vessels using a finite volume pressure-correction scheme. Comm. Numer. Meth. Eng. 25 (2009) 533-551. · Zbl 1162.76035 · doi:10.1002/cnm.1212
[34] A. Porpora, P. Zunino, C. Vergara and M. Piccinelli, Numerical treatment of boundary conditions to replace lateral branches in haemodynamics. Int. J. Numer. Meth. Biomed. Eng. 28 (2012) 1165-1183. · doi:10.1002/cnm.2488
[35] A. Qaddouria, L. Laayounib, S. Loiselc, J Cotea and M.J. Gander, Optimized Schwarz methods with an overset grid for the shallow-water equations: preliminary results. Appl. Num. Math. 58 (2008) 459-471. · Zbl 1133.76037 · doi:10.1016/j.apnum.2007.01.015
[36] A. Quarteroni, A. Manzoni and C. Vergara, The cardiovascular system: mathematical modelling, numerical algorithms and clinical applications. Acta Numer. 26 (2017) 365-590. · Zbl 1376.92016 · doi:10.1017/S0962492917000046
[37] A. Quarteroni, A. Veneziani and C. Vergara, Geometric multiscale modeling of the cardiovascular system, between theory and practice. Comput. Methods Appl. Mech. Eng. 302 (2016) 193-252. · Zbl 1423.76528 · doi:10.1016/j.cma.2016.01.007
[38] B. Stupfel, Improved transmission conditions for a one-dimensional domain decomposition method applied to the solution of the Helmhotz equation. J. Comput. Phys. 229 (2010) 851-874. · Zbl 1184.78081 · doi:10.1016/j.jcp.2009.10.015
[39] A. Veneziani and C. Vergara, Flow rate defective boundary conditions in haemodinamics simulations. Int. J. Num. Methods Fluids 47 (2005) 803-816. · Zbl 1134.76748 · doi:10.1002/fld.843
[40] A. Veneziani and C. Vergara, An approximate method for solving incompressible Navier-Stokes problems with flow rate conditions. Comput. Methods Appl. Mech. Eng. 196 (2007) 1685-1700. · Zbl 1173.76355 · doi:10.1016/j.cma.2006.09.011
[41] C. Vergara, Nitsche’s method for defective boundary value problems in incompressibile fluid-dynamics. J. Sci. Comput. 46 (2011) 100-123. · Zbl 1237.65116 · doi:10.1007/s10915-010-9389-7
[42] I.E. Vignon-Clementel, C.A. Figueroa, K. Jansen and C. Taylor, Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure waves in arteries. Comput. Methods Appl. Mech. Eng. 195 (2006) 3776-3996. · Zbl 1175.76098 · doi:10.1016/j.cma.2005.04.014
[43] Y. Yu, H. Baek and G.E. Karniadakis, Generalized fictitious methods for fluid-structure interactions: analysis and simulations. J. Comput. Phys. 245 (2013) 317-346. · Zbl 1349.76577 · doi:10.1016/j.jcp.2013.03.025
[44] P. Zunino, Numerical approximation of incompressible flows with net flux defective boundary conditions by means of penalty technique. Comput. Methods Appl. Mech. Eng. 198 (2009) 3026-3038. · Zbl 1229.76061 · doi:10.1016/j.cma.2009.05.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.