×

Numerical simulation of flow past two circular cylinders in cruciform arrangement. (English) Zbl 1404.76079

Summary: Flow past two circular cylinders in cruciform arrangement is simulated by direct numerical simulations for Reynolds numbers ranging from 100 to 500. The study is aimed at investigating the local flow pattern near the gap between the two cylinders, the global vortex shedding flow in the wake of the cylinders and their effects on the force coefficients of the two cylinders. The three identified local flow patterns near the gap: trail vortex (TV), necklace vortex (NV) and vortex shedding in the gap (SG) agree with those found by flow visualization in experimental studies. As for the global wake flow, two modes of vortex shedding are identified: K mode with inclined wake vortices and P mode where the wake vortices are parallel to the cylinders. The K mode occurs when the gap is slightly greater than the boundary gap between the NV and SG. It also coexists with the SG gap flow pattern if the Reynolds number is very small \((\mathrm{Re}=100)\). The flow pattern affects the force coefficient. The K mode increases the mean drag coefficient and the standard deviation of the lift coefficient at the centre of the upstream cylinder because the wake vortices converge towards the centre. The mean drag coefficient and standard deviation of the lift coefficient of the downstream cylinder decreases because of the shedding effect from the upstream cylinder.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
76D17 Viscous vortex flows
76-04 Software, source code, etc. for problems pertaining to fluid mechanics
76D33 Waves for incompressible viscous fluids
Full Text: DOI

References:

[1] Abrahamsen Prsic, M.; Ong, M. C.; Pettersen, B.; Myrhaug, D., Large eddy simulations of flow around a smooth circular cylinder in a uniform current in the subcritical flow regime, Ocean Engng, 77, 61-73, (2014) · doi:10.1016/j.oceaneng.2013.10.018
[2] Afgan, I.; Kahil, Y.; Benhamadouche, S.; Sagaut, P., Large eddy simulation of the flow around single and two side-by-side cylinders at subcritical Reynolds numbers, Phys. Fluids, 23, (2011) · doi:10.1063/1.3596267
[3] Alam, M. M.; Moriya, M.; Sakamoto, H., Aerodynamic characteristics of two side-by-side circular cylinders and application of wavelet analysis on the switching phenomenon, J. Fluids Struct., 18, 325-346, (2003) · doi:10.1016/j.jfluidstructs.2003.07.005
[4] Carmo, B. S.; Meneghini, J. R.; Sherwin, S. J., Possible states in the flow around two circular cylinders in tandem with separations in the vicinity of the drag inversion spacing, Phys. Fluids, 22, 1-7, (2010) · Zbl 1190.76019 · doi:10.1063/1.3420111
[5] Carmo, B. S.; Meneghini, J. R.; Sherwin, S. J., Secondary instabilities in the flow around two circular cylinders in tandem, J. Fluid Mech., 644, 395-431, (2010) · Zbl 1189.76218 · doi:10.1017/S0022112009992473
[6] Carmo, B. S.; Sherwin, S. J.; Bearman, P. W.; Willden, R. H. J., Wake transition in the flow around two circular cylinders in staggered arrangements, J. Fluid Mech., 597, 1-29, (2008) · Zbl 1133.76018 · doi:10.1017/S0022112007009639
[7] Dargahi, B., The turbulent flow field around a circular cylinder, Exp. Fluids, 8, 1-12, (1989) · doi:10.1007/BF00203058
[8] Deng, J.; Ren, A. L.; Shao, X. M., The flow between a stationary cylinder and a downstream elastic cylinder in cruciform arrangement, J. Fluids Struct., 23, 715-731, (2007) · doi:10.1016/j.jfluidstructs.2006.11.005
[9] Dimopoulos, H. G.; Hanratty, T. J., Velocity gradients at the wall for flow around a cylinder for Reynolds numbers between 60 and 360, J. Fluid Mech., 33, 303-319, (1968) · doi:10.1017/S0022112068001321
[10] Fox, T. A., Interference in the wake of two square-section cylinders arranged perpendicular to each other, J. Wind Engng Ind. Aerodyn., 40, 75-92, (1992) · doi:10.1016/0167-6105(92)90522-C
[11] Gerrard, J. H., The mechanics of the formation region of vortices behind bluff bodies, J. Fluid Mech., 25, 2, 401-413, (1966) · doi:10.1017/S0022112066001721
[12] Grove, A. S.; Shair, F. H.; Petersen, E. E.; Acrivos, A., An experimental investigation of the steady separated flow past a circular cylinder, J. Fluid Mech., 19, 60-80, (1964) · Zbl 0117.42506 · doi:10.1017/S0022112064000544
[13] Gu, Z.; Sun, T., On interference between two circular cylinders in staggered arrangement at high subcritical Reynolds numbers, J. Wind Engng Ind. Aerodyn., 80, 287-309, (1999) · doi:10.1016/S0167-6105(98)00205-0
[14] Igarashi, T., Characteristics of the flow around two circular cylinders arranged in tandem - 1, Bull. JSME, 24, 323-331, (1981) · doi:10.1299/jsme1958.24.323
[15] Jeong, J.; Hussain, F., On the identification of a vortex, J. Fluid Mech., 285, 69-94, (1995) · Zbl 0847.76007 · doi:10.1017/S0022112095000462
[16] Kato, N.; Koide, M.; Takahashi, T.; Shirakash, M., VIVs of a circular cylinder with a downstream strip-plate in cruciform arrangement, J. Fluids Struct., 30, 97-114, (2012) · doi:10.1016/j.jfluidstructs.2012.02.007
[17] Koide, K.; Takahashi, T.; Shirakashi, M.; Salim, S. A. Z. B. S., Three-dimensional structure of longitudinal vortices shedding from cruciform two-cylinder systems with different geometries, J. Vis., 20, 4, 753-763, (2017)
[18] Lima E. Silva, A. L. F.; Silva-Neto, A.; Damasceno, J. J. R., Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method, J. Comput. Physi., 189, 351-370, (2003) · Zbl 1061.76046 · doi:10.1016/S0021-9991(03)00214-6
[19] Liu, M. M.; Lu, L.; Teng, B.; Zhao, M.; Tang, G. Q., Re-examination of laminar flow over twin circular cylinders in tandem arrangement, Fluid Dyn. Res., 46, (2014) · Zbl 1426.76133
[20] Nguyen, T.; Koide, M.; Takahashi, T.; Shirakashi, M., Universality of longitudinal vortices shedding from a cruciform two circular cylinder system in uniform flow, J. Fluid Sci. Technol., 5, 3, 603-616, (2010) · doi:10.1299/jfst.5.603
[21] Nguyen, T.; Koide, M.; Yamada, S.; Takahashi, T.; Shirakashi, M., Influence of mass damping ratios on VIVs of a cylinder with a downstream counterpart in cruciform arrangement, J. Fluids Struct., 28, 40-55, (2012) · doi:10.1016/j.jfluidstructs.2011.10.006
[22] Shirakashi, M.; Bae, H. M.; Sano, M.; Takahashi, T., Characteristics of periodic vortex shedding from two cylinders in cruciform arrangement, J. Fluids Struct., 8, 239-256, (1994) · doi:10.1006/jfls.1994.1012
[23] Sumer, B. M.; Fredsøe, J., Hydrodynamics Around Cylindrical Structures, (1997), World Scientific · Zbl 0964.76001 · doi:10.1142/3316
[24] Sumner, D., Two circular cylinders in cross-flow: a review, J. Fluids Struct., 26, 849-899, (2010) · doi:10.1016/j.jfluidstructs.2010.07.001
[25] Sumner, D.; Price, S.; Paidoussis, M., Flow-pattern identification for two staggered circular cylinders in cross-flow, J. Fluid Mech., 411, 263-303, (2000) · Zbl 0951.76505 · doi:10.1017/S0022112099008137
[26] Sumner, D.; Richards, M. D.; Akosile, O. O., Two staggered circular cylinders of equal diameter in cross-flow, J. Fluids Struct., 20, 255-276, (2005) · doi:10.1016/j.jfluidstructs.2004.10.006
[27] Thapa, J.; Zhao, M.; Cheng, L.; Zhou, T., Three-dimensional simulations of flow past two circular cylinders in side-by-side arrangements at right and oblique attacks, J. Fluids Struct., 55, 64-83, (2015) · doi:10.1016/j.jfluidstructs.2015.02.003
[28] Thapa, J.; Zhao, M.; Cheng, L.; Zhou, T., Three-dimensional flow around two circular cylinders of different diameters in a close proximity, Phys. Fluids, 27, (2015) · doi:10.1063/1.4928306
[29] Tong, F.; Cheng, L.; Zhao, M., Numerical simulations of steady flow past two cylinders in staggered arrangements, J. Fluid Mech., 765, 114-149, (2015) · doi:10.1017/jfm.2014.708
[30] Williamson, C. H. K., Evolution of a single wake behind a pair of bluff bodies, J. Fluid Mech., 159, 1-18, (1985) · doi:10.1017/S002211208500307X
[31] Williamson, C. H. K., The existence of two stages in the transition to three-dimensionality of a cylinder wake, Phys. Fluids, 31, 3165-3168, (1989) · doi:10.1063/1.866925
[32] Wu, M. H.; Wen, C. Y.; Yen, R. H.; Weng, M. C.; Wang, A. B., Experimental and numerical study of the separation angle for flow around a circular cylinder at low Reynolds number, J. Fluid Mech., 515, 233-260, (2004) · Zbl 1061.76507 · doi:10.1017/S0022112004000436
[33] Zdravkovich, M. M., Review of flow interference between two circular cylinders in various arrangements, Trans. ASME J. Fluids Engng, 99, 618-633, (1977) · doi:10.1115/1.3448871
[34] Zdravkovich, M. M., Interference between two circular cylinders forming a cross, J. Fluid Mech., 128, 231-246, (1983) · doi:10.1017/S0022112083000464
[35] Zdravkovich, M. M., The effects of interference between circular cylinders in cross flow, J. Fluids Struct., 1, 239-261, (1987) · doi:10.1016/S0889-9746(87)90355-0
[36] Zhao, M.; Kaja, K.; Xiang, Y.; Cheng, L., Vortex-induced vibration of four cylinders in an in-line square configuration, Phys. Fluids, 28, (2016)
[37] Zhao, M.; Thapa, J.; Cheng, L.; Zhou, T., Three-dimensional transition of vortex shedding flow around a circular cylinder at right and oblique attacks, Phys. Fluids, 25, (2013)
[38] Zhou, Y.; Zhang, H. J.; Yiu, M. W., The turbulent wake of two side-by-side circular cylinders, J. Fluid Mech., 458, 303-332, (2002) · Zbl 0993.76509 · doi:10.1017/S0022112002007887
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.