×

Analytical effective one-body formalism for extreme-mass-ratio inspirals with eccentric orbits. (English) Zbl 1521.83030

Summary: Extreme-mass-ratio inspirals (EMRIs) are among the most important sources for future spaceborne gravitational wave detectors. In this kind of system, compact objects usually orbit around central supermassive black holes on complicated trajectories. Usually, these trajectories are approximated as the geodesics of Kerr space-times, and orbital evolution is simulated with the help of the adiabatic approximation. However, this approach omits the influence of the compact object on its background. In this paper, using the effective one-body formalism, we analytically calculate the trajectory of a nonspinning compact object around a massive Kerr black hole in an equatorial eccentric orbit (omitting the orbital inclination) and express the fundamental orbital frequencies in explicit forms. Our formalism includes the first-order corrections for the mass ratio in the conservative orbital motion. Furthermore, we insert the mass-ratio-related terms into the first post-Newtonian energy fluxes. By calculating the gravitational waves using the Teukolsky equations, we quantitatively reveal the influence of the mass of the compact object on the data analysis. We find that the shrinking of geodesic motion by taking small objects as test particles may not be appropriate for the detection of EMRIs.

MSC:

83C35 Gravitational waves
83C57 Black holes
83C10 Equations of motion in general relativity and gravitational theory
85A05 Galactic and stellar dynamics
83B05 Observational and experimental questions in relativity and gravitational theory

References:

[1] Abbott, B. P., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett., 116 (2016) · doi:10.1103/PhysRevLett.116.061102
[2] Abbott, B. P., Gw151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence, Phys. Rev. Lett., 116 (2016) · doi:10.1103/PhysRevLett.116.061102
[3] LIGO Scientific; Abbott, B. P., Gw170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2, Phys. Rev. Lett., 118 (2017) · doi:10.1103/PhysRevLett.118.221101
[4] Abbott, B. P., Gw170608: Observation of a 19 solar-mass binary black hole coalescence, Astrophys. J. Lett., 851, L35 (2017) · doi:10.3847/2041-8213/aa9f0c
[5] Abbott, B. P., Gw170814: a three-detector observation of gravitational waves from a binary black hole coalescence, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.141101
[6] Abbott, B. P., Gw170817: observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.141101
[7] Danzmann, K.; LISA Study Team, Lisa: Laser interferometer space antenna for gravitational wave measurements, Classical Quantum Gravity, 13, A247 (1996) · doi:10.1088/0264-9381/13/11A/033
[8] Hu, W-R; Wu, Y-L, The taiji program in space for gravitational wave physics and the nature of gravity (2017) · doi:10.1093/nsr/nwx116
[9] Luo, J., Tianqin: a space-borne gravitational wave detector, Classical Quantum Gravity, 33 (2016) · doi:10.1088/0264-9381/33/3/035010
[10] Amaro-Seoane, P.; Gair, J. R.; Freitag, M.; Miller, M. C.; Mandel, I.; Cutler, C. J.; Babak, S., Intermediate and extreme mass-ratio inspirals???astrophysics, science applications and detection using lisa, Classical Quantum Gravity, 24, R113 (2007) · Zbl 1128.85300 · doi:10.1088/0264-9381/24/17/R01
[11] Babak, S.; Gair, J.; Sesana, A.; Barausse, E.; Sopuerta, C. F.; Berry, C. P L.; Berti, E.; Amaro-Seoane, P.; Petiteau, A.; Klein, A., Science with the space-based interferometer lisa. v. extreme mass-ratio inspirals, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.103012
[12] Berry, C. P L.; Hughes, S. A.; Sopuerta, C. F.; Chua, A. J K.; Heffernan, A.; Holley-Bockelmann, K.; Mihaylov, D. P.; Miller, M. C.; Sesana, A., The unique potential of extreme mass-ratio inspirals for gravitational-wave astronomy, arXiv preprint (2019)
[13] Gair, J. R.; Vallisneri, M.; Larson, S. L.; Baker, J. G., Testing general relativity with low-frequency, space-based gravitational-wave detectors, Living Rev. Relativ., 16, 7 (2013) · doi:10.12942/lrr-2013-7
[14] Leor, B.; Cutler, C., Lisa capture sources: approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy, Phys. Rev. D, 69 (2004) · doi:10.1103/PhysRevD.69.082005
[15] Chua, A. J K.; Moore, C. J.; Gair, J. R., Augmented kludge waveforms for detecting extreme-mass-ratio inspirals, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.044005
[16] Babak, S.; Fang, H.; Gair, J. R.; Glampedakis, K.; Hughes, S. A., “kludge” gravitational waveforms for a test-body orbiting a kerr black hole, Phys. Rev. D, 75 (2007) · doi:10.1103/PhysRevD.75.024005
[17] Xin, S.; Han, W-B; Yang, S-C, Gravitational waves from extreme-mass-ratio inspirals using general parametrized metrics, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.084055
[18] Hughes, S. A.; Warburton, N.; Khanna, G.; Chua, A. J K.; Katz, M. L., Adiabatic waveforms for extreme mass-ratio inspirals via multivoice decomposition in time and frequency, arXiv preprint (2021)
[19] Yunes, N.; Buonanno, A.; Hughes, S. A.; Miller, M. C.; Pan, Y., Modeling extreme mass-ratio inspirals within the effective-one-body approach, Phys. Rev. Lett., 104 (2010) · doi:10.1103/PhysRevLett.104.091102
[20] Yunes, N.; Buonanno, A.; Hughes, S. A.; Pan, Y.; Barausse, E.; Miller, M. C.; Throwe, W., Extreme mass-ratio inspirals in the effective-one-body approach: Quasicircular, equatorial orbits around a spinning black hole, Phys. Rev. D, 83 (2011) · doi:10.1103/PhysRevD.83.044044
[21] Wen-Biao, H., Gravitational waves from extreme-mass-ratio inspirals in equatorially eccentric orbits, Int. J. Mod. Phys. D, 23, 1450064 (2014) · Zbl 1293.83013 · doi:10.1142/S0218271814500643
[22] Amaro-Seoane, P., Detecting intermediate-mass-ratio inspirals from the ground and space, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.063018
[23] Buonanno, A.; Damour, T., Effective one-body approach to general relativistic two-body dynamics, Phys. Rev. D, 59 (1999) · doi:10.1103/PhysRevD.59.084006
[24] Buonanno, A.; Damour, T., Transition from inspiral to plunge in binary black hole coalescences, Phys. Rev. D, 62 (2000) · doi:10.1103/PhysRevD.62.064015
[25] Taracchini, A., Effective-one-body model for black-hole binaries with generic mass ratios and spins, Phys. Rev. D, 89 (2014) · doi:10.1103/PhysRevD.89.061502
[26] Buonanno, A.; Pan, Y.; Baker, J. G.; Centrella, J.; Kelly, B. J.; McWilliams, S. T.; van Meter, J. R., Approaching faithful templates for nonspinning binary black holes using the effective-one-body approach, Phys. Rev. D, 76 (2007) · doi:10.1103/PhysRevD.76.104049
[27] Pürrer, M., Frequency domain reduced order model of aligned-spin effective-one-body waveforms with generic mass-ratios and spins, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.064041
[28] Husa, S.; Khan, S.; Hannam, M.; Pürrer, M.; Ohme, F.; Forteza, X. J.; Bohé, A., Frequency-domain gravitational waves from nonprecessing black-hole binaries. i. new numerical waveforms and anatomy of the signal, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.044006
[29] Khan, S.; Husa, S.; Hannam, M.; Ohme, F.; Pürrer, M.; Forteza, X. J.; Bohé, A., Frequency-domain gravitational waves from nonprecessing black-hole binaries. ii. a phenomenological model for the advanced detector era, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.044007
[30] Chu, T.; Fong, H.; Kumar, P.; Pfeiffer, H. P.; Boyle, M.; Hemberger, D. A.; Kidder, L. E.; Scheel, M. A.; Szilagyi, B., On the accuracy and precision of numerical waveforms: effect of waveform extraction methodology, Classical Quantum Gravity, 33 (2016) · doi:10.1088/0264-9381/33/16/165001
[31] Kumar, P.; Chu, T.; Fong, H.; Pfeiffer, H. P.; Boyle, M.; Hemberger, D. A.; Kidder, L. E.; Scheel, M. A.; Szilagyi, B., Accuracy of binary black hole waveform models for aligned-spin binaries, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.104050
[32] Pan, Y.; Buonanno, A.; Taracchini, A.; Kidder, L. E.; Mroué, A. H.; Pfeiffer, H. P.; Scheel, M. A.; Szilágyi, B., Phys. Rev. D, 89 (2014) · doi:10.1103/PhysRevD.89.084006
[33] Hinderer, T.; Babak, S., Foundations of an effective-one-body model for coalescing binaries on eccentric orbits, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.104048
[34] Cao, Z.; Han, W. B., Waveform model for an eccentric binary black hole based on the effective-one-body-numerical-relativity formalism, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.044028
[35] Teukolsky, S. A., Perturbations of a rotating black hole. 1. fundamental equations for gravitational electromagnetic and neutrino field perturbations, Astrophys. J., 185, 635-647 (1973) · doi:10.1086/152444
[36] Han, W-B, Gravitational radiation from a spinning compact object around a supermassive kerr black hole in circular orbit, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.084013
[37] Han, W-B; Cao, Z., Constructing effective one-body dynamics with numerical energy flux for intermediate-mass-ratio inspirals, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.044014
[38] Han, W-B; Cao, Z.; Hu, Y-M, Excitation of high frequency voices from intermediate-mass-ratio inspirals with large eccentricity, Classical Quantum Gravity, 34 (2017) · doi:10.1088/1361-6382/aa891b
[39] Cai, R.; Cao, Z.; Han, W., The gravitational wave models for binary compact objects, Chin. Sci. Bull., 61, 1525-1535 (2016) · doi:10.1360/N972016-00299
[40] Yang, S-C; Han, W-B; Xin, S.; Zhang, C., Testing dispersion of gravitational waves from eccentric extreme-mass-ratio inspirals, Int. J. Mod. Phys. D, 28 (2019) · doi:10.1142/S0218271819501669
[41] Cheng, R.; Han, W-B, Highly accurate recalibrate waveforms for extreme-mass-ratio inspirals in effective-one-body frames, Chinese Optics (2019)
[42] Cheng, R.; Han, W-B, Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.084024
[43] Rezzolla, L.; Barausse, E.; Dorband, E. N.; Pollney, D.; Reisswig, C.; Seiler, J.; Husa, S., Final spin from the coalescence of two black holes, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.044002
[44] Barausse, E.; Rezzolla, L., Predicting the direction of the final spin from the coalescence of two black holes, Astrophys. J. Lett., 704, L40 (2009) · doi:10.1088/0004-637X/704/1/L40
[45] Taracchini, A.; Pan, Y.; Buonanno, A.; Barausse, E.; Boyle, M.; Chu, T.; Lovelace, G.; Pfeiffer, H. P.; Scheel, M. A., Prototype effective-one-body model for nonprecessing spinning inspiral-merger-ringdown waveforms, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.024011
[46] Barausse, E.; Buonanno, A., Extending the effective-one-body Hamiltonian of black-hole binaries to include next-to-next-to-leading spin-orbit couplings, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.104027
[47] Witzany, V., Hamilton-Jacobi equation for spinning particles near black holes, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.104030
[48] Damour, Thibault, Coalescence of two spinning black holes: An effective one-body approach, Phys. Rev. D, 64 (2001) · doi:10.1103/PhysRevD.64.124013
[49] Damour, T.; Jaranowski, P.; Schaefer, G., Determination of the last stable orbit for circular general relativistic binaries at the third post-Newtonian approximation, Phys. Rev. D, 62 (2000) · doi:10.1103/PhysRevD.62.084011
[50] Norichika, S.; Norichika, R., Calculation of radiation reaction effect on orbital parameters in kerr spacetime, Prog. Theor. Exp. Phys., 2015 (2015)
[51] Gair, J. R.; Glampedakis, K., Improved approximate inspirals of test bodies into kerr black holes, Phys. Rev. D, 73 (2006) · doi:10.1103/PhysRevD.73.064037
[52] Glampedakis, K.; Kennefick, D., Zoom and whirl: eccentric equatorial orbits around spinning black holes and their evolution under gravitational radiation reaction, Phys. Rev. D, 66 (2002) · doi:10.1103/PhysRevD.66.044002
[53] Blanchet, L.; Buonanno, A.; Faye, G., Impact of the second-order self-forces on the dephasing of the gravitational waves from quasicircular extreme mass-ratio inspirals, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.064041
[54] Isoyama, S.; Fujita, R.; Sago, N.; Tagoshi, H.; Tanaka, T., Impact of the second-order self-forces on the dephasing of the gravitational waves from quasicircular extreme mass-ratio inspirals, Phys. Rev. D, 87 (2013) · doi:10.1103/PhysRevD.87.024010
[55] Marsat, S.; Bohe, A.; Blanchet, L.; Buonanno, A., Next-to-leading tail-induced spin-orbit effects in the gravitational radiation flux of compact binaries, Class. Quantum Grav., 31 (2014) · Zbl 1292.83020 · doi:10.1088/0264-9381/31/2/025023
[56] Lee, S. F., Detection, measurement, and gravitational radiation, Phys. Rev. D, 46, 5236 (1992) · doi:10.1103/PhysRevD.46.5236
[57] Fujita, R., Gravitational radiation for extreme mass-ratio inspirals to the 14th post-Newtonian order, Prog. Theor. Phys., 127, 583-590 (2012) · Zbl 1250.83026 · doi:10.1143/PTP.127.583
[58] Han, W-B, Fast evolution and waveform generator for extreme-mass-ratio inspirals in equatorial-circular orbits, Classical Quantum Gravity, 33 (2016) · Zbl 1338.83065 · doi:10.1088/0264-9381/33/6/065009
[59] Van De Meent, M.; Warburton, N., Fast self-forced inspirals, Classical Quantum Gravity, 35 (2018) · doi:10.1088/1361-6382/aac8ce
[60] Fujita, R.; Tagoshi, H., New numerical methods to evaluate homogeneous solutions of the teukolsky equation, Prog. Theor. Phys., 112, 415-450 (2004) · Zbl 1064.85006 · doi:10.1143/PTP.112.415
[61] Steinhoff, J.; Hinderer, T.; Buonanno, A.; Taracchini, A., Dynamical tides in general relativity: Effective action and effective-one-body hamiltonian, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.104028
[62] Bohé, A., Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.044028
[63] Sasaki, M.; Tagoshi, H., Analytic black hole perturbation approach to gravitational radiation, Living Rev. Relativ., 6, 6 (2003) · Zbl 1070.83019 · doi:10.12942/lrr-2003-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.