×

On the integrality of locally algebraic representations of \(\mathrm{GL}_2(D)\). (English) Zbl 07786320

In [Ann. Sci. Éc. Norm. Supér. (4) 39, No. 5, 775–839 (2006; Zbl 1117.22008)], M. Emerton provided necessary conditions for the existence of integral structures in terms of the exponents of Jacquet modules of locally algebraic representations of the group of rational points of a connected reductive group over a non-archimedean local field.
Let \(F\) stand for a non-archimedean local field, and let \(G= \mathrm{GL}_2(D)\), where \(D\) stands for a central \(F\)-divison algebra. In the paper under the review, the authors prove that the integrality conditions of Emerton are also sufficient for the existence of an integral structure in a smooth tamely ramified principal series representation \(\mathrm{Ind}_B^{G}(\tau_1 \otimes \tau_2)\) of \(G\), where \(B\) stands for the minimal parabolic subgroup of \(G\).

MSC:

11F70 Representation-theoretic methods; automorphic representations over local and global fields
22E50 Representations of Lie and linear algebraic groups over local fields

Citations:

Zbl 1117.22008

References:

[1] Assaf, Eran, Existence of invariant norms in \(p\)-adic representations of \(G L_2(F)\) of large weights. J. Number Theory, 95-141 (2021), MR4221529 · Zbl 1507.11107
[2] Breuil, Christophe; Schneider, Peter, First steps towards \(p\)-adic Langlands functoriality. J. Reine Angew. Math., 149-180 (2007), MR2359853 · Zbl 1180.11036
[3] Caraiani, Ana; Emerton, Matthew; Gee, Toby; Geraghty, David; Paškūnas, Vytautas; Shin, Sug Woo, Patching and the \(p\)-adic local Langlands correspondence. Camb. J. Math., 2, 197-287 (2016), MR3529394 · Zbl 1403.11073
[4] De Ieso, Marco, Existence de normes invariantes pour \(\operatorname{GL}_2\). J. Number Theory, 8, 2729-2755 (2013), MR3045213 · Zbl 1286.11081
[5] Emerton, Matthew, Jacquet modules of locally analytic representations of \(p\)-adic reductive groups. I. Construction and first properties. Ann. Sci. Éc. Norm. Supér. (4), 5, 775-839 (2006), MR2292633 · Zbl 1117.22008
[6] Große Klönne, Elmar, On the universal module of \(p\)-adic spherical Hecke algebras. Am. J. Math., 3, 599-652 (2014), MR3214272 · Zbl 1305.22021
[7] Guy, Henniart; Marie-France, Vignéras, Representations of \(G L_n(D)\) near the identity (2023), available at · Zbl 1535.11074
[8] Hu, Yongquan, Normes invariantes et existence de filtrations admissibles. J. Reine Angew. Math., 107-141 (2009), MR2560407 · Zbl 1214.11132
[9] Hu, Yong Quan, A note on integral structures in some locally algebraic representations of \(\operatorname{GL}_2\). Acta Math. Sin. Engl. Ser., 1, 59-72 (2021), MR4204535 · Zbl 1479.22013
[10] Moy, Allen; Prasad, Gopal, Jacquet functors and unrefined minimal \(K\)-types. Comment. Math. Helv., 1, 98-121 (1996), MR1371680 · Zbl 0860.22006
[11] Mínguez, Alberto; Sécherre, Vincent, Représentations lisses modulo \(l\) de \(\operatorname{GL}_m(D)\). Duke Math. J., 4, 795-887 (2014), MR3178433 · Zbl 1293.22005
[12] Prasad, Dipendra; Raghuram, A., Kirillov theory for \(\operatorname{GL}_2(D)\) where \(D\) is a division algebra over a non-Archimedean local field. Duke Math. J., 1, 19-44 (2000), MR1769724 · Zbl 0958.22010
[13] Raghuram, A., On the restriction to \(D^\ast \times D^\ast\) of representations of \(p\)-adic \(\operatorname{GL}_2(D)\). Can. J. Math., 5, 1050-1068 (2007), MR2354402 · Zbl 1136.22011
[14] Sorensen, Claus M., A proof of the Breuil-Schneider conjecture in the indecomposable case. Ann. Math. (2), 1, 367-382 (2013), MR2999043 · Zbl 1328.22009
[15] Schneider, Peter; Stuhler, Ulrich, Representation theory and sheaves on the Bruhat-Tits building. Publ. Math. Inst. Hautes Études Sci., 85, 97-191 (1997), MR1471867 · Zbl 0892.22012
[16] Schneider, P.; Teitelbaum, J.; Prasad, Dipendra, \(U(\mathfrak{g})\)-finite locally analytic representations. Represent. Theory, 111-128 (2001), With an appendix by Dipendra Prasad. MR1835001 · Zbl 1028.17007
[17] Silberger, Allan J.; Zink, Ernst-Wilhelm, An explicit matching theorem for level zero discrete series of unit groups of \(p\)-adic simple algebras. J. Reine Angew. Math., 173-235 (2005), MR2164626 · Zbl 1087.22012
[18] Tadić, Marko, Induced representations of \(\operatorname{GL}(n, A)\) for \(p\)-adic division algebras \(A\). J. Reine Angew. Math., 48-77 (1990), MR1040995 · Zbl 0684.22008
[19] Vignéras, Marie-France, A criterion for integral structures and coefficient systems on the tree of \(\operatorname{PGL}(2, F)\). Pure Appl. Math. Q., 4 (2008), Special Issue: in honor of Jean-Pierre Serre. Part 1, 1291-1316, MR2441702 · Zbl 1192.22010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.