×

An novel protocol for the quantum secure multi-party summation based on two-particle Bell states. (English) Zbl 1379.81039

Summary: A protocol for the quantum secure multi-party summation based on two-particle Bell states is proposed. In this protocol, two-particle Bell states are used as private information carriers. Without using the entangled character of Bell states, we also use Pauli matrices operations to encode information and Hadamard matrix to extract information. The proposed protocol can also resist various attacks and overcomes the problem of information leakage with acceptable efficiency. In theory, our protocol can be used to build complex secure protocols for other multiparty computations and also lots of other important applications in distributed networks.

MSC:

81P94 Quantum cryptography (quantum-theoretic aspects)
94A60 Cryptography
15B34 Boolean and Hadamard matrices
Full Text: DOI

References:

[1] Goldreich, O., Micali, S., Wigderson, A.: How to Play Any Mental Game. ACM, New York (1987) · doi:10.1145/28395.28420
[2] Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284, 545-549 (2011) · doi:10.1016/j.optcom.2010.09.005
[3] Lin, S., Sun, Y., Liu, X.-F., Yao, Z.-Q.: Quantum private comparison protocol with d-dimensional Bell states. Quantum Inf. Process 12(1), 559-568 (2013) · Zbl 1277.94031 · doi:10.1007/s11128-012-0395-6
[4] Zhang, W.W., Li, D., Zhang, K.J., et al.: A quantum protocol for millionaire problem with Bell states. Quantum Inf. Process. 12, 2241-2249 (2013) · Zbl 1267.81134 · doi:10.1007/s11128-012-0520-6
[5] Guo, FZ; Gao, F.; Qin, SJ; etal., No article title, Quantum Inf. Process, 12, 2793 (2013) · Zbl 1283.81049 · doi:10.1007/s11128-013-0536-6
[6] Zhou, Y.H., Shi, W.M., Yang, Y.G.: A quantum protocol for millionaire problem with continuous variables. Commun. Theor. Phys. 61, 452-456 (2014) · doi:10.1088/0253-6102/61/4/08
[7] Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42, 055305 (2009) · Zbl 1156.81364 · doi:10.1088/1751-8113/42/5/055305
[8] Chen, X.B., Xu, G., Niu, X.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561-1565 (2010) · doi:10.1016/j.optcom.2009.11.085
[9] Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with w state. Opt. Commun. 284, 1561-1565 (2011) · doi:10.1016/j.optcom.2010.11.072
[10] Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z.: A protocol for the quantum private comparison of equality with chi-type state. Int. J. Theor. Phys. 51(1), 69-77 (2011) · Zbl 1246.81047 · doi:10.1007/s10773-011-0878-8
[11] Liu, W., Wang, Y.B.: Quantum private comparison based on GHZ entangled states. Int. J. Theor. Phys. 51, 3596-3604 (2012) · Zbl 1262.81041 · doi:10.1007/s10773-012-1246-z
[12] Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z., Cui, W.: New quantum private comparison protocol using-type state. Int. J. Theor. Phys. 51(6), 1953-1960 (2012) · Zbl 1251.81033 · doi:10.1007/s10773-011-1073-7
[13] Liu, W., Wang, Y.B., Tao, J.Z., Cui, W.: Quantum private comparison protocol based on bell entangled states. Commun. Theor. Phys. 57(4), 583-588 (2012) · Zbl 1247.81097 · doi:10.1088/0253-6102/57/4/11
[14] Liu, W., Wang, Y.B., Wang, X.M.: Quantum multi-party private comparison protocol using d-dimensional bell states. Int. J. Theor. Phys. 54, 1830-1839 (2015) · Zbl 1317.81081 · doi:10.1007/s10773-014-2388-y
[15] Liu, W., Wang, Y.B., Wang, X.M.: Multi-party quantum private comparison protocol using d-dimensional basis states without entanglement swapping. Int. J. Theor. Phys. 53, 1085-1091 (2014) · Zbl 1297.81064 · doi:10.1007/s10773-013-1903-x
[16] Liu, W., Wang, Y.B.: Dynamic multi-party quantum private comparison protocol with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 55, 5307-5317 (2016) · Zbl 1371.81091 · doi:10.1007/s10773-016-3150-4
[17] Hillery, M.; Ziman, M.; Buek, V.; Bielikov, M., No article title, Phys. Lett. A, 349, 75 (2006) · Zbl 1195.81032 · doi:10.1016/j.physleta.2005.09.010
[18] Du, J.Z., Chen, X.B., Wen, Q.X., Zhu, F.C.: Secure multiparty quantum summation. Acta Phys. Sin-Ch Ed 56, 6214-6219 (2007)
[19] Chen, X. B., Xu, G., Yang, Y.X., Wen, Q.Y.: An efficient protocol for the secure multi-party quantum summation. Int. J. Theor. Phys. 49, 2793-2804 (2010) · Zbl 1203.81047 · doi:10.1007/s10773-010-0472-5
[20] Zhang, C., Sun, Z.-W., Huang, X.: Three-party quantum summation without a trusted third party. International Journal of Quantum Information 13(2), 1550011 (2015) · Zbl 1328.81076 · doi:10.1142/S0219749915500112
[21] Zhang, C., Sun, Z., Huang, Y.: High-capacity quantum summation with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 53(3), 933-941 (2014) · Zbl 1284.81079 · doi:10.1007/s10773-013-1884-9
[22] Shi, R.-h., Mu, Y., Zhong, H., Cui, J., Zhang, S.: Secure multiparty quantum computation for summation and multiplication. Sci. Rep. 6, 19655 (2016) · doi:10.1038/srep19655
[23] Jakobi, M., Simon, C., Gisin, N., Bancal, J.D., Branciard, C., Walenta, N., Zbinden, H.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83(2), 022301 (2011) · doi:10.1103/PhysRevA.83.022301
[24] Gao, F., Liu, B., Wen, Q.-Y.: Flexible quantum private queries based on quantum key distribution. Opt. Exp. 20(16), 17411-17420 (2012) · doi:10.1364/OE.20.017411
[25] Gao, F.; etal., No article title, IEEE J. Sel. Top. Quant., 21, 6600111 (2015)
[26] Liu, B., Gao, F., Huang, W., Wen, Q.-Y.: QKD-Based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58, 100301 (2015) · doi:10.1007/s11433-015-5714-3
[27] Wei, CY; etal., No article title, Phys. Rev. A, 93, 042318 (2016) · doi:10.1103/PhysRevA.93.042318
[28] Gao, F., Qin, S.J., Wen, Q.Y., et al.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf. Comput. 7, 329 (2007) · Zbl 1152.81716
[29] Qin, S.J., Gao, F., Wen, Q.Y., et al.: Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secretsharing protocol. Phys. Rev. A 76, 062324 (2007) · doi:10.1103/PhysRevA.76.062324
[30] Lin, S., Gao, F., Guo, F.Z., et al.: Comment on Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 76, 036301 (2007) · doi:10.1103/PhysRevA.76.036301
[31] Lin, S., Wen, Q.Y., Gao, F., et al.: Improving the security of multiparty quantum secret sharing based on the improved Bostrom-Felbinger protocol. Opt. Commun. 281, 4553 (2008) · doi:10.1016/j.optcom.2008.05.026
[32] Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Comment on experimental demonstration of a quantum protocol for byzantine agreement and liar detection. Phys. Rev. Lett. 101, 208901 (2008) · doi:10.1103/PhysRevLett.101.208901
[33] Song, T.T., Zhang, J., Gao, F., et al.: Participant attack on quantum secret sharing based on entanglement swapping. Chin. Phys. B 18, 1333 (2009) · doi:10.1088/1674-1056/18/4/007
[34] Guo, F.Z., Qin, S.J., Gao, F., et al.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur. Phys. J. D 56, 445 (2010) · doi:10.1140/epjd/e2009-00306-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.