×

Continuous functions with impermeable graphs. (English) Zbl 07750741

Summary: We construct a Hölder continuous function on the unit interval which coincides in uncountably (in fact continuum) many points with every function of total variation smaller than 1 passing through the origin. We conclude that this function has impermeable graph – one of the key concepts introduced in this paper – and we present further examples of functions both with permeable and impermeable graphs. Moreover, we show that typical (in the sense of Baire category) continuous functions have permeable graphs. The first example function is subsequently used to construct an example of a continuous function on the plane which is intrinsically Lipschitz continuous on the complement of the graph of a Hölder continuous function with impermeable graph, but which is not Lipschitz continuous on the plane. As another main result, we construct a continuous function on the unit interval which coincides in a set of Hausdorff dimension 1 with every function of total variation smaller than 1 which passes through the origin.
© 2023 Wiley-VCH GmbH.

MSC:

26A16 Lipschitz (Hölder) classes
28A78 Hausdorff and packing measures
26A21 Classification of real functions; Baire classification of sets and functions
26B30 Absolutely continuous real functions of several variables, functions of bounded variation
26B35 Special properties of functions of several variables, Hölder conditions, etc.
54C05 Continuous maps
54E40 Special maps on metric spaces

References:

[1] S.Banach, Sur les lignes rectifiables et les surfaces dont l’aire est finie, Fund. Math.7 (1925), 225-236. · JFM 51.0199.03
[2] T. D.Benavides, How many zeros does a continuous function have?Am. Math. Mon.93 (1986), no. 6, 464-466. · Zbl 0627.26003
[3] J. B.Brown, U. B.Darji, and E.Larsen, Nowhere monotone functions and functions of nonmonotonic type, Proc. Am. Math. Soc.127 (1999), no. 1, 173-182. · Zbl 0909.26004
[4] A. M.Bruckner, and S. H.Jones, Behavior of continuous functions with respect to intersection patterns, Real Anal. Exch.19 (1993/94), no. 2, 414-432. · Zbl 0822.26003
[5] Z. Buczolich., Sets of convexity of continuous functions, Acta Math. Hung.52 (1988), no. 3, 291-303. · Zbl 0668.26008
[6] E.Čech, Sur les fonctions continues qui prennent chaque leur valeur un nombre fini de fois, Fundam. Math.17 (1931), 32-39. · JFM 57.0300.01
[7] K. J.Falconer, The geometry of fractal sets, vol. 85, Cambridge University Press, Cambridge, 1985. · Zbl 0587.28004
[8] H.Federer, Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band vol. 153, Springer‐Verlag, New York, 1969. · Zbl 0176.00801
[9] S.Kalmykov, L. V.Kovalev, and T.Rajala, Removable sets for intrinsic metric and for holomorphic functions, J. Anal. Math.139 (2019), 751-772. · Zbl 1436.30054
[10] I.Karatzas and S. E.Shreve, Brownian motion and stochastic calculus, Graduate texts in mathematics, vol. 113, Springer, New York, 1991. · Zbl 0734.60060
[11] A.Kechris, Classical descriptive set theory, Graduate texts in mathematics, Springer, New York, 1995. · Zbl 0819.04002
[12] A.Klenke, Probability theory: a comprehensive course, Universitext, Springer, London, 2013.
[13] G.Leobacher and A.Steinicke, Exception sets of intrinsic and piecewise Lipschitz functions, J. Geom. Anal.32 (2022), no. 4, 118. · Zbl 1490.54015
[14] G.Leobacher and M.Szölgyenyi, A strong order 1/2 method for multidimensional SDEs with discontinuous drift, Ann. Appl. Probab.27 (2017), no. 4, 2383-2418. · Zbl 1373.60102
[15] G.Leobacher and M.Szölgyenyi, Convergence of the Euler-Maruyama method for multidimensional SDEs with discontinuous drift and degenerate diffusion coefficient, Numer. Math.138 (2018), no. 1, 219-239. · Zbl 1432.65012
[16] S.Minakshisundar, On the roots of a continuous nondifferentiable function, J. Indian Math.4 (1940), 31-33. · JFM 66.1224.02
[17] T.Müller‐Gronbach and L.Yaroslavtseva, A strong order 3/4 method for SDEs with discontinuous drift coefficient, IMA J. Numer. Anal.42 (2022), no. 1, 229-259. · Zbl 1515.65030
[18] T.Müller‐Gronbach and L.Yaroslavtseva, On the performance of the Euler-Maruyama scheme for SDEs with discontinuous drift coefficient, Ann. Inst. H. Poincaré Probab. Statist.56 (1178), no. 2, 1162-1178. 2020. · Zbl 1494.65006
[19] A.Neuenkirch, M.Szölgyenyi, and L.Szpruch, An adaptive Euler-Maruyama scheme for stochastic differential equations with discontinuous drift and its convergence analysis, SIAM J. Numer. Anal.57 (2019), no. 1, 378-403. · Zbl 1418.60062
[20] J. C.Ponce‐Campuzano and M. Á.Maldonado‐Aguilar, Vito Volterra’s construction of a nonconstant function with a bounded, non‐Riemann integrable derivative, BSHM Bull. J.Br. Soc. Hist. Math.30 (2015), 143-152. · Zbl 1325.01016
[21] T.Rajala, A note on the level sets of Hölder continuous functions on the real line, 2008. https://users.jyu.fi/tamaraja/publications/Raj08Hol.pdf, Online, accessed 07‐26‐21.
[22] D.Revuz and M.Yor, Continuous Martingales and Brownian motion, Grundlehren der mathematischen Wissenschaften, Springer, Berlin, 2004.
[23] B. S.Thomson, J. B.Bruckner, and A. M.Bruckner, Elementary real analysis, Prentice‐Hall, 2001.
[24] M.Younsi, On removable sets for holomorphic functions, EMS Surv. Math. Sci.2 (2015), no. 2, 219-254. · Zbl 1331.30002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.