×

Robust control for uncertain linear system subject to input saturation. (English) Zbl 1463.93060

Summary: A robust control scheme using composite nonlinear feedback (CNF) technology is proposed to improve tracking control performance for the uncertain linear system with input saturation and unknown external disturbances. A disturbance observer is presented to estimate the unknown disturbance generated by a linear exogenous system. The designed gain matrix of the disturbance observer is determined by solving linear matrix inequalities (LMIs). Based on the output of the designed disturbance observer, a robust CNF controller including a linear feedback control item and a nonlinear item is developed to follow the desired tracking signals. The linear feedback controller is designed using LMIs and the stability of the closed-loop system is proved via rigorous Lyapunov analysis. Finally, the extensive simulation results are presented to illustrate the effectiveness of the proposed control scheme.

MSC:

93B35 Sensitivity (robustness)
93B52 Feedback control
93C41 Control/observation systems with incomplete information
93C05 Linear systems in control theory

References:

[1] Cao, Y.-Y.; Lin, Z.; Hu, T., Stability analysis of linear time-delay systems subject to input saturation, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49, 2, 233-240 (2002) · Zbl 1368.93461 · doi:10.1109/81.983870
[2] Li, Z.; Ge, S. S.; Ming, A., Adaptive robust motion/force control of holonomic-constrained nonholonomic mobile manipulators, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics, 37, 3, 607-616 (2007) · doi:10.1109/TSMCB.2006.888661
[3] Li, Z.; Ge, S. S.; Adams, M.; Wijesoma, W. S., Robust adaptive control of uncertain force/motion constrained nonholonomic mobile manipulators, Automatica, 44, 3, 776-784 (2008) · doi:10.1016/j.automatica.2007.07.012
[4] Dong, C.; Hou, Y.; Zhang, Y.; Wang, Q., Model reference adaptive switching control of a linearized hypersonic flight vehicle model with actuator saturation, Proceedings of the Institution of Mechanical Engineers I: Journal of Systems and Control Engineering, 224, 3, 289-303 (2010) · doi:10.1243/09596518JSCE829
[5] Zhao, Y.; Sun, W.; Gao, H., Robust control synthesis for seat suspension systems with actuator saturation and time-varying input delay, Journal of Sound and Vibration, 329, 21, 4335-4353 (2010) · doi:10.1016/j.jsv.2009.09.017
[6] Sun, W.; Zhao, Z.; Gao, H., Saturated adaptive robust control for active suspension systems, IEEE Transactions on Industrial Electronics, 60, 9, 3889-3896 (2013) · doi:10.1109/TIE.2012.2206340
[7] Hu, T.; Lin, Z., Control Systems with Actuator Saturation: Analysis and Design (2001), Boston, Mass, USA: Birkhäauser, Boston, Mass, USA · Zbl 1061.93003
[8] Hu, T.; Teel, A. R.; Zaccarian, L., Anti-windup synthesis for linear control systems with input saturation: achieving regional, nonlinear performance, Automatica, 44, 2, 512-519 (2008) · Zbl 1283.93120 · doi:10.1016/j.automatica.2007.06.003
[9] Liu, Y.-J.; Tong, S.; Chen, C. L. P., Adaptive fuzzy control via observer design for uncertain nonlinear systems with unmodeled dynamics, IEEE Transactions on Fuzzy Systems, 21, 2, 275-288 (2013) · doi:10.1109/TFUZZ.2012.2212200
[10] Zhou, B.; Gao, H.; Lin, Z.; Duan, G.-R., Stabilization of linear systems with distributed input delay and input saturation, Automatica, 48, 5, 712-724 (2012) · Zbl 1348.93224 · doi:10.1016/j.automatica.2012.02.007
[11] Li, Y.; Tong, S.; Li, T., Direct adaptive fuzzy backstepping control of uncertain nonlinear systems in the presence of input saturation, Neural Computing and Applications, 23, 5, 1207-1216 (2013) · doi:10.1007/s00521-012-0993-3
[12] Grimm, G.; Hatfield, J.; Postlethwaite, I.; Teel, A. R.; Turner, M. C.; Zaccarian, L., Antiwindup for stable linear systems with input saturation: an LMI-based synthesis, IEEE Transactions on Automatic Control, 48, 9, 1509-1525 (2003) · Zbl 1364.93635 · doi:10.1109/TAC.2003.816965
[13] Cao, Y.-Y.; Lin, Z.; Ward, D. G., An antiwindup approach to enlarging domain of attraction for linear systems subject to actuator saturation, IEEE Transactions on Automatic Control, 47, 1, 140-145 (2002) · Zbl 1364.93612 · doi:10.1109/9.981734
[14] Lee, Y. I.; Kouvaritakis, B., Robust receding horizon predictive control for systems with uncertain dynamics and input saturation, Automatica, 36, 10, 1497-1504 (2000) · Zbl 0966.93046 · doi:10.1016/S0005-1098(00)00064-9
[15] Li, Z.-J.; Tan, W.; Nian, S.-C.; Liu, J.-Z., A stabilizing model predictive control for linear systems with input saturation, Proceedings of the International Conference on Machine Learning and Cybernetics · doi:10.1109/ICMLC.2006.258397
[16] Richter, H.; O’Dell, B. D.; Misawa, E. A., Robust positively invariant cylinders in constrained variable structure control, IEEE Transactions on Automatic Control, 52, 11, 2058-2069 (2007) · Zbl 1366.93041 · doi:10.1109/TAC.2007.908314
[17] Zhou, B.; Li, D.; Lin, Z., Control of discrete-time periodic linear systems with input saturation via multi-step periodic invariant set, Proceedings of the 10th World Congress on Intelligent Control and Automation (WCICA ’12) · doi:10.1109/WCICA.2012.6358094
[18] Tong, S.; Wang, T.; Li, Y.; Chen, B., A combined backstepping and stochastic small-gain approach to robust adaptive fuzzy output feedback control, IEEE Transactions on Fuzzy Systems, 21, 2, 314-327 (2013) · doi:10.1109/TFUZZ.2012.2213260
[19] Li, Y.; Tong, S.; Liu, Y.; Li, T., Adaptive fuzzy robust output feedback control of nonlinear systems with unknown dead zones based on small-gain approach, IEEE Transactions on Fuzzy Systems, 22, 1, 164-176 (2014) · doi:10.1109/TFUZZ.2013.2249585
[20] Hu, Q.; Ma, G.; Xie, L., Robust and adaptive variable structure output feedback control of uncertain systems with input nonlinearity, Automatica, 44, 2, 552-559 (2008) · Zbl 1283.93063 · doi:10.1016/j.automatica.2007.06.024
[21] Zhu, Z.; Xia, Y.; Fu, M., Adaptive sliding mode control for attitude stabilization with actuator saturation, IEEE Transactions on Industrial Electronics, 58, 10, 4898-4907 (2011) · doi:10.1109/TIE.2011.2107719
[22] Tong, S.; Li, Y., Adaptive fuzzy output feedback tracking backstepping control of strict-feedback nonlinear systems with unknown dead zones, IEEE Transactions on Fuzzy Systems, 20, 1, 168-180 (2012) · doi:10.1109/TFUZZ.2011.2171189
[23] Tong, S.; Li, Y., Adaptive fuzzy output feedback control of MIMO nonlinear systems with unknown dead-zone inputs, IEEE Transactions on Fuzzy Systems, 21, 1, 134-146 (2013) · doi:10.1109/TFUZZ.2012.2204065
[24] Li, Y.; Li, T.; Jing, X., Indirect adaptive fuzzy control for input and output constrained nonlinear systems using a barrier Lyapunov function, International Journal of Adaptive Control and Signal Processing, 28, 2, 184-199 (2014) · Zbl 1330.93145 · doi:10.1002/acs.2410
[25] Lin, Z.; Pachter, M.; Banda, S., Toward improvement of tracking performance—nonlinear feedback for linear systems, International Journal of Control, 70, 1, 1-11 (1998) · Zbl 0930.93045 · doi:10.1080/002071798222433
[26] Chen, B. M.; Lee, T. H.; Peng, K.; Venkataramanan, V., Composite nonlinear feedback control for linear systems with input saturation: theory and an application, IEEE Transactions on Automatic Control, 48, 3, 427-439 (2003) · Zbl 1364.93294 · doi:10.1109/TAC.2003.809148
[27] Peng, K.; Chen, B. M.; Lee, T. H.; Venkataramanan, V., Design and implementation of a dual-stage actuated HDD servo system via composite nonlinear control approach, Mechatronics, 14, 9, 965-988 (2004) · doi:10.1016/j.mechatronics.2004.06.002
[28] He, Y.; Chen, B. M.; Wu, C., Composite nonlinear control with state and measurement feedback for general multivariable systems with input saturation, Systems & Control Letters, 54, 5, 455-469 (2005) · Zbl 1129.93414 · doi:10.1016/j.sysconle.2004.09.010
[29] Lan, W.; Chen, B. M.; He, Y., Composite nonlinear feedback control for a class of nonlinear systems with input saturation, Proceedings of the 16th Triennial World Congress of International Federation of Automatic Control (IFAC ’05)
[30] Peng, K.; Cheng, G.; Chen, B. M.; Lee, T. H., Improvement of transient performance in tracking control for discrete-time systems with input saturation and disturbances, IET Control Theory and Applications, 1, 1, 65-74 (2007) · doi:10.1049/iet-cta:20050205
[31] Cheng, G.; Peng, K., Robust composite nonlinear feedback control with application to a servo positioning system, IEEE Transactions on Industrial Electronics, 54, 2, 1132-1140 (2007) · doi:10.1109/TIE.2007.893052
[32] Cai, G.; Chen, B. M.; Dong, X.; Lee, T. H., Design and implementation of a robust and nonlinear flight control system for an unmanned helicopter, Mechatronics, 21, 5, 803-820 (2011) · doi:10.1016/j.mechatronics.2011.02.002
[33] Liu, Y.-J.; Tong, S.-C.; Li, T.-S., Observer-based adaptive fuzzy tracking control for a class of uncertain nonlinear MIMO systems, Fuzzy Sets and Systems, 164, 1, 25-44 (2011) · Zbl 1217.93090 · doi:10.1016/j.fss.2010.09.002
[34] Karimi, H. R.; Zapateiro, M.; Luo, N., Adaptive synchronization of master-slave systems with mixed neutral and discrete time-delays and nonlinear perturbations, Asian Journal of Control, 14, 1, 251-257 (2012) · Zbl 1282.93147 · doi:10.1002/asjc.439
[35] Chen, W.-H., Nonlinear disturbance observer-enhanced dynamic inversion control of missiles, Journal of Guidance, Control, and Dynamics, 26, 1, 161-166 (2003)
[36] Tong, S.; Li, Y.; Li, Y.; Liu, Y., Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics, 41, 6, 1693-1704 (2011) · doi:10.1109/TSMCB.2011.2159264
[37] Chen, W.-H., Disturbance observer based control for nonlinear systems, IEEE Transactions on Mechatronics, 9, 4, 706-710 (2004) · doi:10.1109/TMECH.2004.839034
[38] Guo, L.; Chen, W.-H., Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach, International Journal of Robust and Nonlinear Control, 15, 3, 109-125 (2005) · Zbl 1078.93030 · doi:10.1002/rnc.978
[39] Gao, Z.; Shi, X.; Ding, S. X., Fuzzy state/disturbance observer design for T-S fuzzy systems with application to sensor fault estimation, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics, 38, 3, 875-880 (2008) · doi:10.1109/TSMCB.2008.917185
[40] Chen, X. S.; Yang, J.; Li, S. H.; Li, Q., Disturbance observer based multi-variable control of ball mill grinding circuits, Journal of Process Control, 19, 7, 1205-1213 (2009) · doi:10.1016/j.jprocont.2009.02.004
[41] Wei, X.; Guo, L., Composite disturbance-observer-based control and \(H_\infty\) control for complex continuous models, International Journal of Robust and Nonlinear Control, 20, 1, 106-118 (2010) · Zbl 1191.93014 · doi:10.1002/rnc.1425
[42] Chen, M.; Chen, W.-H., Sliding mode control for a class of uncertain nonlinear system based on disturbance observer, International Journal of Adaptive Control and Signal Processing, 24, 1, 51-64 (2010) · Zbl 1185.93039 · doi:10.1002/acs.1110
[43] Zhang, H.-H.; Wu, D.; Li, C.-C.; Yan, Z.-P., Research on depth control based on output disturbance observer for UUVs maneuvering near the surface, Proceedings of the 9th IEEE International Conference on Mechatronics and Automation (ICMA ’12) · doi:10.1109/ICMA.2012.6285751
[44] Yang, J.; Li, S.; Yu, X., Sliding-mode control for systems with mismatched uncertainties via a disturbance observer, IEEE Transactions on Industrial Electronics, 60, 1, 160-169 (2013) · doi:10.1109/TIE.2012.2183841
[45] Yang, Q.; Chen, M., Composite nonlinear control for near space vehicles with input saturation based on disturbance observer, Proceedings of the IEEE 32nd Chinese Control Conference (CCC ’13)
[46] Chen, M.; Chen, W.-H., Disturbance-observer-based robust control for time delay uncertain systems, International Journal of Control, Automation and Systems, 8, 2, 445-453 (2010) · doi:10.1007/s12555-010-0233-5
[47] Kim, J.-H.; Bien, Z., Robust stability of uncertain linear systems with saturating actuators, IEEE Transactions on Automatic Control, 39, 1, 202-207 (1994) · Zbl 0794.93086 · doi:10.1109/9.273369
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.