×

Adaptive sliding mode control for uncertain Euler-Lagrange systems with input saturation. (English) Zbl 1472.93021

Summary: In this paper, the tracking control problem of uncertain Euler-Lagrange systems under control input saturation is studied. To handle system uncertainties, a leakage-type (LT) adaptive law is introduced to update the control gains to approach the disturbance variations without knowing the uncertainty upper bound a priori. In addition, an auxiliary dynamics is designed to deal with the saturation nonlinearity by introducing the auxiliary variables in the controller design. Lyapunov analysis verifies that based on the proposed method, the tracking error will be asymptotically bounded by a neighborhood around the origin. To demonstrate the proposed method, simulations are finally carried out on a two-link robot manipulator. Simulation results show that in the presence of actuator saturation, the proposed method induces less chattering signal in the control input compared to conventional sliding mode controllers.

MSC:

93B12 Variable structure systems
93C40 Adaptive control/observation systems
93C41 Control/observation systems with incomplete information
Full Text: DOI

References:

[1] Hu, Q., Adaptive output feedback sliding-mode manoeuvring and vibration control of flexible spacecraft with input saturation, IET Control Theory Appl., 2, 6, 467-478 (2008)
[2] Hu, Q.; Ma, G.; Xie, L., Robust and adaptive variable structure output feedback control of uncertain systems with input nonlinearity, Automatica, 44, 2, 552-559 (2008) · Zbl 1283.93063
[3] He, W.; Dong, Y.; Sun, C., Adaptive neural impedance control of a robotic manipulator with input saturation, IEEE Trans. Syst. Man Cybern., 46, 3, 334-344 (2015)
[4] Xiao, B.; Yin, S.; Kaynak, O., Tracking control of robotic manipulators with uncertain kinematics and dynamics, IEEE Trans. Ind. Electron., 63, 10, 6439-6449 (2016)
[5] Sun, Y.; Chen, L.; Qin, H.; Wang, W., Distributed finite-time coordinated tracking control for multiple Euler-Lagrange systems with input nonlinearity, Nonlinear Dyn., 95, 2395-2414 (2019) · Zbl 1432.93303
[6] Zou, A. M.; Ruiter, A.; Kumar, K. D., Finite-time output feedback attitude control for rigid spacecraft under control input saturation, J. Frankl. Inst., 353, 17, 4442-4470 (2016) · Zbl 1349.93174
[7] Chen, C.; Zhu, G.; Zhang, Q.; Zhang, J., Robust adaptive finite-time tracking control for uncertain Euler-Lagrange systems with input saturation, IEEE Access, 8, 187605-187641 (2020)
[8] Guo, Y.; Huang, B.; Li, A.-j.; Wang, C.-q., Integral sliding mode control for Euler-Lagrange systems with input saturation, Int. J. Robust Nonlinear Control, 29, 1088-1100 (2018) · Zbl 1418.93051
[9] Wang, S.; Gao, Y.; Liu, J.; Wu, L., Saturated sliding mode control with limited magnitude and rate, IET Control Theory Appl., 12, 8, 1075-1085 (2018)
[10] Qin, H.; Li, C.; Sun, Y.; Wang, N., Adaptive trajectory tracking algorithm of unmanned surface vessel based on anti-windup compensator with full-state constraints, Ocean Eng., 200, 106906 (2020)
[11] Xia, K.; Huo, W., Robust adaptive backstepping neural networks control for spacecraft rendezvous and docking with input saturation, ISA Trans., 62, 249-257 (2016)
[12] Huang, J.; Wen, C.; Wei, W.; Song, Y., Global stable tracking control of underactuated ships with input saturation, Syst. Control Lett., 85, 1-7 (2015) · Zbl 1322.93050
[13] Seeber, R.; Reichhartinger, M., Conditioned super-twisting algorithm for systems with saturated control action, Automatica, 116, 108921 (2020) · Zbl 1440.93069
[14] Huang, X.; Zhang, C.; Lu, H.; Li, M., Adaptive reaching law based sliding mode control for electromagnetic formation flight with input saturation, J. Frankl. Inst., 353, 11, 2398-2417 (2016) · Zbl 1347.93076
[15] Sun, T.; Long, C.; Wang, W.; Pan, Y., Semiglobal exponential control of Euler-Lagrange systems using a sliding-mode disturbance observer, Automatica, 112, 108677 (2020) · Zbl 1430.93177
[16] Roy, S.; Kar, I. N.; Lee, J.; Tsagarakis, N. G.; Caldwell, D. G., Adaptive-robust control of a class of EL systems with parametric variations using artificially delayed input and position feedback, IEEE Trans. Control Syst. Technol., 27, 2, 603-625 (2017)
[17] Dhaouadi, R.; Hatab, A. A., Dynamic modelling of differential-drive mobile robots using Lagrange and Newton-Euler methodologies: a unified framework, Adv. Robot. Autom., 2, 2, 1000107 (2013)
[18] Chen, M.; Yu, J., Adaptive dynamic surface control of NSVs with input saturation using a disturbance observer, Chin. J. Aeronaut., 28, 3, 853-864 (2015)
[19] Zhou, Q.; Wang, L.; Wu, C.; Li, H.; Du, H., Adaptive fuzzy control for nonstrict-feedback systems with input saturation and output constraint, IEEE Trans. Syst. Man Cybern., 47, 1, 1-12 (2016)
[20] Liu, Y.; Zhao, Z.; Guo, F., Adaptive Lyapunov-based backstepping control for an axially moving system with input saturation, IET Control Theory Appl., 10, 16, 2083-2092 (2016)
[21] Chen, L.; Wang, H.; Huang, Y.; Ping, Z.; Yu, M.; Zheng, X.; Ye, M.; Hu, Y., Robust hierarchical sliding mode control of a two-wheeled self-balancing vehicle using perturbation estimation, Mech. Syst. Signal Process., 139, 106584 (2020)
[22] Sun, Z.; Zheng, J.; Man, Z.; Fu, M.; Lu, R., Nested adaptive super-twisting sliding mode control design for a vehicle steer-by-wire system, Mech. Syst. Signal Process., 122, 658-672 (2019)
[23] Lin, X.; Yu, Y.; Sun, C.-y., A decoupling control for quadrotor UAV using dynamic surface control and sliding mode disturbance observer, Nonlinear Dyn., 97, 781-795 (2019)
[24] Wang, Y.; Gu, L.; Xu, Y.; Cao, X., Practical tracking control of robot manipulators with continuous fractional-order nonsingular terminal sliding mode, IEEE Trans. Ind. Electron., 63, 10, 6194-6204 (2016)
[25] Zhu, Y.; Qiao, J.; Guo, L., Adaptive sliding mode disturbance observer-based composite control with prescribed performance of space manipulators for target capturing, IEEE Trans. Ind. Electron., 66, 3, 1973-1983 (2018)
[26] Mondal, S.; Mahanta, C., Adaptive second order terminal sliding mode controller for robotic manipulators, J. Frankl. Inst., 351, 4, 2356-2377 (2014) · Zbl 1372.93065
[27] Shao, K.; Zheng, J.; Huang, K.; Wang, H.; Man, Z.; Fu, M., Finite-time control of a linear motor positioner using adaptive recursive terminal sliding mode, IEEE Trans. Ind. Electron., 67, 8, 6659-6668 (2020)
[28] Shao, K., Nested adaptive integral terminal sliding mode control for high-order uncertain nonlinear systems, Int. J. Robust Nonlinear Control, 31, 6668-6680 (2021) · Zbl 1527.93221
[29] Jia, S.; Shan, J., Finite-time trajectory tracking control of space manipulator under actuator saturation, IEEE Trans. Ind. Electron., 67, 3, 2086-2096 (2020)
[30] Plestan, F.; Shtessel, Y.; Bregeault, V.; Poznyak, A., New methodologies for adaptive sliding mode control, Int. J. Control, 83, 9, 1907-1919 (2010) · Zbl 1213.93031
[31] Baek, J.; Jin, M.; Han, S., A new adaptive sliding-mode control scheme for application to robot manipulators, IEEE Trans. Ind. Electron., 63, 6, 3628-3637 (2016)
[32] Shao, K.; Zheng, J.; Wang, H.; Wang, X.; Lu, R.; Man, Z., Tracking control of a linear motor positioner based on barrier function adaptive sliding mode, IEEE Trans. Ind. Inf. (2021)
[33] Roy, S.; Baldi, S.; Fridman, L. M., On adaptive sliding mode control without a priori bounded uncertainty, Automatica, 111, 108650 (2020) · Zbl 1430.93031
[34] Edwards, C.; Shtessel, Y. B., Adaptive continuous higher order sliding mode control, Automatica, 65, 183-190 (2016) · Zbl 1328.93066
[35] Shao, K.; Zheng, J.; Wang, H.; Xu, F.; Wang, X.; Liang, B., Recursive sliding mode control with adaptive disturbance observer for a linear motor positioner, Mech. Syst. Signal Process., 146, 107014 (2021)
[36] Sun, H.; Chen, Y. H.; Zhao, H., Adaptive robust control methodology for active roll control system with uncertainty, Nonlinear Dyn., 92, 2, 359-371 (2018) · Zbl 1398.93087
[37] Chen, Y.-H.; Zhang, X., Adaptive robust approximate constraint-following control for mechanical systems, J. Frankl. Inst., 347, 1, 69-86 (2010) · Zbl 1298.93200
[38] Shao, K.; Zheng, J.; Wang, H.; Wang, X.; Liang, B., Leakage-type adaptive state and disturbance observers for uncertain nonlinear systems, Nonlinear Dyn. (2021), doi:10.1007/s11071-021-06715-6
[39] Roy, S.; Roy, S. B.; Kar, I. N., Adaptive-robust control of Euler-Lagrange systems with linearly parametrizable uncertainty bound, IEEE Trans. Control Syst. Technol., 26, 5, 1842-1850 (2018)
[40] Wen, C.; Jing, Z.; Liu, Z.; Su, H., Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance, IEEE Trans. Autom. Control, 56, 7, 1672-1678 (2011) · Zbl 1368.93317
[41] Karason, S. P.; Annaswamy, A. M., Adaptive control in the presence of input constraints, American Control Conference, San Francisco, CA, USA, 1370-1374 (1993)
[42] Arefinia, E.; Talebi, H. A.; Doustmohammadi, A., A robust adaptive model reference impedance control of a robotic manipulator with actuator saturation, IEEE Trans. Syst. Man Cybern., 5, 2, 409-420 (2020)
[43] Slotine, J.-J. E.; Li, W., Applied Nonlinear Control, 278-280 (1991), Prentice Hall Englewood Cliffs, NJ · Zbl 0753.93036
[44] Roy, S.; Lee, J.; Baldi, S., A new adaptive-robust design for time delay control under state-dependent stability condition, IEEE Trans. Control Syst. Technol., 29, 1, 420-427 (2021)
[45] Lin, Z., Global control of linear systems with saturating actuators, Automatica, 34, 7, 4357-4362 (1998)
[46] Feng, Y.; Yu, X.; Man, Z., Non-singular terminal sliding mode control of rigid manipulators, Automatica, 38, 12, 2159-2167 (2002) · Zbl 1015.93006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.