×

A general framework of piecewise-polynomial Mumford-Shah model for image segmentation. (English) Zbl 1416.94014

Summary: A new general framework of piecewise-polynomial Mumford-Shah model is proposed. In terms of the fidelity term, we use piecewise polynomials to approximate the inner and outer regions of the contour of the objective image. For more accurate approximation of the image, the proposed model has no constraint on the regularization term for polynomials. Moreover, we apply the anisotropic control to drive the initial contour to the desirable position. The proposed model generalizes the well-known Chan-Vese model and improves Vese’s model, which is almost the simplest framework to apply piecewise polynomials to approximate the original Mumford-Shah model. Instead of solving the Euler-Lagrange equation by evolution implementation, we utilize the split Bregman iteration, which is shown to be a fast algorithm. Experimental results demonstrate that the proposed model has more desirable performance in terms of segmentation accuracy, efficiency and robustness, compared with several other variational models in addressing some challenging segmentation scenarios.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
68U10 Computing methodologies for image processing
49J45 Methods involving semicontinuity and convergence; relaxation
65K05 Numerical mathematical programming methods
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
Full Text: DOI

References:

[1] G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, Vol. 147, Springer, New York, 2006. · Zbl 1110.35001
[2] N. Badshah and K. Chen, Image selective segmentation under geometrical constraints using an active contour approach, Commun. Comput. Phys. 7 (2010), pp. 759. · Zbl 1365.65038
[3] E. Bae and X.C. Tai, Graph cut optimization for the piecewise constant level set method applied to multiphase image segmentation, in Scale Space and Variational Methods in Computer Vision, Springer, Berlin, Heidelberg, 2009, pp. 1-13. · Zbl 1296.94023
[4] Y. Boykov and G. Funka-Lea, Graph cuts and efficient N-D image segmentation, Int. J. Comput. Vis. 70 (2006), pp. 109-131. doi: 10.1007/s11263-006-7934-5
[5] E.S. Brown, T.F. Chan and X. Bresson, Completely convex formulation of the Chan-Vese image segmentation model, Int. J. Comput. Vis. 98 (2012), pp. 103-121. doi: 10.1007/s11263-011-0499-y · Zbl 1254.68271
[6] V. Caselles, R. Kimmel and G. Sapiro, Geodesic active contours, Int. J. Comput. Vis. 22 (1997), pp. 61-79. doi: 10.1023/A:1007979827043 · Zbl 0894.68131
[7] T.F. Chan, S. Esedoglu and M. Nikolova, Algorithms for finding global minimizers of image segmentation and denoising models, SIAM J. Appl. Math. 66 (2006), pp. 1632-1648. doi: 10.1137/040615286 · Zbl 1117.94002
[8] T. Chan and J. Shen, Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods, SIAM, Philadelphia, 2005. · Zbl 1095.68127
[9] T.F. Chan and L.A. Vese, Active contours without edges, IEEE Trans. Image Process. 10 (2001), pp. 266-277. doi: 10.1109/83.902291 · Zbl 1039.68779
[10] C. Chen and G. Xu, Construction of geometric partial differential equations for level sets, J. Comput. Math. 28 (2010), pp. 105-121. doi: 10.4208/jcm.2009.10-m1014 · Zbl 1224.65049
[11] D. Comaniciu and P. Meer, Mean shift: A robust approach toward feature space analysis, IEEE Trans. Pattern Anal. Mach. Intell. 24 (2002), pp. 603-619. doi: 10.1109/34.1000236
[12] D. Cremers, M. Rousson and R. Deriche, A review of statistical approaches to level set segmentation: Integrating color, texture, motion and shape, Int. J. Comput. Vis. 72 (2007), pp. 195-215. doi: 10.1007/s11263-006-8711-1
[13] P.F. Felzenszwalb and D.P. Huttenlocher, Efficient graph-based image segmentation, Int. J. Comput. Vis. 59 (2004), pp. 167-181. doi: 10.1023/B:VISI.0000022288.19776.77 · Zbl 1477.68505
[14] D. Freedman and T. Zhang, Interactive graph cut based segmentation with shape priors, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005 (CVPR 2005), San Diego, CA, USA, Vol. 1, 2005, pp. 755-762.
[15] T. Goldstein, X. Bresson and S. Osher, Geometric applications of the split Bregman method: Segmentation and surface reconstruction, J. Scient. Comput. 45 (2010), pp. 272-293. doi: 10.1007/s10915-009-9331-z · Zbl 1203.65044
[16] T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems, SIAM J. Imag. Sci. 2 (2009), pp. 323-343. doi: 10.1137/080725891 · Zbl 1177.65088
[17] M. Kass, A. Witkin and D. Terzopoulos, Snakes: Active contour models, Int. J. Comput. Vis. 1 (1988), pp. 321-331. doi: 10.1007/BF00133570 · Zbl 0646.68105
[18] C. Li, C.Y. Kao, J.C. Gore and Z. Ding, Minimization of region-scalable fitting energy for image segmentation, IEEE Trans. Image Process. 17 (2008), pp. 1940-1949. doi: 10.1109/TIP.2008.2002304 · Zbl 1371.94225
[19] F. Li, M.K. Ng and C. Li, Variational fuzzy Mumford-Shah model for image segmentation, SIAM J. Appl. Math. 70 (2010), pp. 2750-2770. doi: 10.1137/090753887 · Zbl 1213.94017
[20] J. Lie, M. Lysaker and X.C. Tai, A binary level set model and some applications to Mumford-Shah image segmentation, IEEE Trans. Image Process. 15 (2006), pp. 1171-1181. doi: 10.1109/TIP.2005.863956 · Zbl 1286.94018
[21] D. Mumford and J. Shah, Boundary detection by minimizing functionals, in IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 1985, pp. 22-26.
[22] D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Commun. Pure Appl. Math. 42 (1989), pp. 577-685. doi: 10.1002/cpa.3160420503 · Zbl 0691.49036
[23] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Vol. 153, Springer, New York, 2003. · Zbl 1026.76001
[24] S. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988), pp. 12-49. doi: 10.1016/0021-9991(88)90002-2 · Zbl 0659.65132
[25] D.K. Panjwani and G. Healey, Markov random field models for unsupervised segmentation of textured color images, IEEE Trans Pattern Anal. Mach. Intell. 17 (1995), pp. 939-954. doi: 10.1109/34.464559
[26] N. Paragios and R. Deriche, Geodesic active regions: A new framework to deal with frame partition problems in computer vision, J. Visual Commun. Image Represent. 13 (2002), pp. 249-268. doi: 10.1006/jvci.2001.0475
[27] L. Rada and K. Chen, A variational model and its numerical solution for local, selective and automatic segmentation, Numer. Algorithms 66 (2014), pp. 399-430. doi: 10.1007/s11075-013-9741-8 · Zbl 1291.62122
[28] J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000), pp. 888-905. doi: 10.1109/34.868688
[29] J. Spencer and K. Chen, A convex and selective variational model for image segmentation, Commun. Math. Sci. 13 (2015), pp. 1453-1472. doi: 10.4310/CMS.2015.v13.n6.a5 · Zbl 1327.62387
[30] X.C. Tai, O. Christiansen, P. Lin and I. Skjælaaen, Image segmentation using some piecewise constant level set methods with MBO type of projection, Int. J. Comput. Vis. 73 (2007), pp. 61-76. doi: 10.1007/s11263-006-9140-x · Zbl 1477.68521
[31] A. Tsai, A.R. Yezzi Jr and A.S. Willsky, Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification, IEEE Trans. Image Process. 10 (2001), pp. 1169-1186. doi: 10.1109/83.935033 · Zbl 1062.68595
[32] L. Vese, Multiphase object detection and image segmentation, in Geometric Level Set Methods in Imaging, Vision, and Graphics, S. Osher and N. Paragios, eds., Springer, New York, 2003, 175-194.
[33] L.A. Vese and T.F. Chan, A multiphase level set framework for image segmentation using the Mumford and Shah model, Int. J. Comput. Vis. 50 (2002), pp. 271-293. doi: 10.1023/A:1020874308076 · Zbl 1012.68782
[34] Y. Yang, C. Li, C. Kao and S. Osher, Split Bregman method for minimization of region-scalable fitting energy for image segmentation, in Advances in Visual Computing, G. Bebis, R. Boyle, B. Parvin, D. Koracin, R. Chung, R. Hammound, M. Hussain, T. Kar-Han, R. Crawfis, D. Thalmann, D. Kao and L. Avila, eds., Springer, Berlin, Heidelberg, 2010, 117-128.
[35] J. Ye and G. Xu, Geometric flow approach for region-based image segmentation, IEEE Trans. Image Process. 21 (2012), pp. 4735-4745. doi: 10.1109/TIP.2011.2162421 · Zbl 1373.94463
[36] R. Zhang, X. Bresson, T. Chan and X.C. Tai, Four color theorem and convex relaxation for image segmentation with any number of regions, Inverse Probl. Imag. 7 (2013), pp. 1099-1113. doi: 10.3934/ipi.2013.7.1099 · Zbl 1272.68450
[37] J. Zhang, K. Chen and D.A. Gould, A fast algorithm for automatic segmentation and extraction of a single object by active surfaces, Int. J. Comput. Math. 92 (2015), pp. 1251-1274. doi: 10.1080/00207160.2014.931943 · Zbl 1310.94020
[38] J. Zhang, K. Chen and B. Yu, A 3D multi-grid algorithm for the Chan-Vese model of variational image segmentation, Int. J. Comput. Math. 89 (2012), pp. 160-189. doi: 10.1080/00207160.2011.632410 · Zbl 1242.94006
[39] J. Zhang, K. Chen, B. Yu and D. Gould, A local information based variational model for selective image segmentation, Inverse Probl. Imag. 8 (2014), pp. 293-320. doi: 10.3934/ipi.2014.8.321 · Zbl 1415.94038
[40] H.K. Zhao, T. Chan, B. Merriman and S. Osher, A variational level set approach to multiphase motion, J. Comput. Phys. 127 (1996), pp. 179-195. doi: 10.1006/jcph.1996.0167 · Zbl 0860.65050
[41] S.C. Zhu and A. Yuille, Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 18 (1996), pp. 884-900. doi: 10.1109/34.537343
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.