×

A lubricant boundary condition for a biological body lined by a thin heterogeneous biofilm. (English) Zbl 1406.92134

Summary: We study the asymptotic behavior of an incompressible viscous fluid flow in a biological body lined by a thin biological film with a cellular microstructure, varying thickness, and a heterogeneous viscosity regulated by a time random process. Letting the thickness of the film tend to zero, we derive an effective biological slip boundary condition on the boundary of the body. This law relates the tangential fluxes to the tangential velocities via a proportional coefficient corresponding to the energy of some local problem. This law describes the ability of the biological film to function as a lubricant reducing friction at the wall of the body. The tangential velocities are functions of the random trajectories of a finely concentrated biological particle.

MSC:

92C35 Physiological flow
76Z05 Physiological flows
35Q92 PDEs in connection with biology, chemistry and other natural sciences
Full Text: DOI

References:

[1] Antontsev, S. N. and Rodrigues, J. F., On stationary thermo-rheological viscous flows, Anal. Univ. Ferrara52 (2006) 19-36. · Zbl 1117.76004
[2] Billingsley, P., Convergence of Probability Measures (Wiley, Chichester, 1999). · Zbl 0172.21201
[3] Bensoussan, A., Lions, J. L. and Papanicolaou, G., Asymptotic Analysis for Periodic Structures (North-Holland, Amsterdam, 1978). · Zbl 0411.60078
[4] Bogovskii, M. E., Solutions of some problems of vector analysis associated with the operators div and grad, Trudy Sem. S.L. Soboleva1 (1980) 5-41(in Russian).
[5] Cao, X., Bansil, R., Bhaskar, K. R., Turner, B. S., LaMont, J. T., Niu, N. and Afdhal, N. H., pH-Dependent conformational change of gastric mucin leads to sol-gel transition, Biophys. J.76 (1999) 1250-1258.
[6] Chechkin, G. A., Piatnitski, A. L. and Shamaev, A. S., Homogenization: Methods and Applications, , Vol. 234 (AMS, Providence, 2007). · Zbl 1128.35002
[7] Didier, G., McKinley, S. A., Hill, D. B. and Fricks, J., Statistical challenges in microrheology, J. Time Ser. Anal.33 (2012) 724-743. · Zbl 1282.62232
[8] Fredberg, J. J., A modal perspective of lung response, J. Acoust. Soc. Am.63 (1978) 962-966.
[9] Georgiades, P., Pudney, P. D. A., Thornton, D. J. and Waigh, T. A., Particle tracking microrheology of purified gastrointestinal mucins, Biopolymers101(4) (2014) 366-377.
[10] Guoa, L., Wonga, P. L. and Guob, F., Effects of viscosity and sliding speed on boundary slippage in thin film hydrodynamic lubrication, Tribol. Inter.107 (2017) 85-93.
[11] Huckaby, J. T. and Lai, S. K., PEGylation for enhancing nanoparticle diffusion in mucus, Adv. Drug Deliv. Rev. (2017), http://dx.doi.org/10.1016/j.addr.2017.08.010.
[12] M. L. Kleptsyna and A. L. Pyatnitskii, Homogenization of a random non-stationary convection-diffusion problem, Usp. Mat. Nauk57(4) (2002) 95-118, English transl. Russian Math. Surv.57(4) (2002) 729-751. · Zbl 1073.35023
[13] Krengel, U., Ergodic Theorems (De Gruyter, Berlin New-York, 1985). · Zbl 0471.28011
[14] O. A. Ladyzhenskaia, V. A. Solonnikov and N. N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type (Nauka, Moscow, 1967); English transl. (American Mathematical Society, Providence, RI, 1968). · Zbl 0164.12302
[15] Lai, S. K., Wang, Y. Y., Wirtz, D. and Hanes, J., Micro-and macrorheology of mucus, Adv. Drug Deliv. Rev.61 (2009) 86-100.
[16] Leal, J., Smyth, H. D. C. and Ghosh, D., Physicochemical properties of mucus and their impact on transmucosal drug delivery, Inter. J. Pharm.532 (2017) 555-572.
[17] Lions, J. L., Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires (Dunod, Gauthier-Villars, Paris, 1969). · Zbl 0189.40603
[18] Liptser, R. Sh. and Shiryaev, A. N., Theory of Martingales (Kluwer, Dordrecht, 1989). · Zbl 0728.60048
[19] Málek, J., Necas, J. and Rajagopal, K. R., Global analysis of the flows of fluids with pressure-dependent viscosities, Arch. Rat. Mech. Anal.165 (2002) 243-269. · Zbl 1022.76011
[20] Merce, R. R., Russell, M. L. and Crapo, J. D., Mucous lining layers in human and rat airways, Ann. Rev. Respir. Dis.145 (1992) 355.
[21] Nucci, G., Suk i, B. and Lutchen, K., Modeling airflow-related shear stress during heterogeneous constriction and mechanical ventilation, J. Appl. Physiol.95 (2003) 348-356.
[22] Ruzicka, M. C., On dimensionless numbers, Chem. Eng. Res. Desi.86 (2008) 835-868.
[23] Smith, D. J., Gaffney, E. A. and Blake, J. R., A viscoelastic traction layer model of muco-ciliary transport, Bull. Math. Bio.69 (2007) 289-327. · Zbl 1133.92309
[24] Spikes, H. and Granick, S., Equation for slip of simple liquids at smooth solid surfaces, Langmuir19 (2003) 5065-5071.
[25] www.teachmephysiology.com/gastrointestinal/stomach/mucus-production.
[26] Temam, R., Navier-Stokes Equations. Theory and Numerical Analysis, , Vol. 2 (North-Holland, Amsterdam, 1984). · Zbl 0568.35002
[27] Xu, F. and Jensen, O. E., Drop spreading with random viscosity, Proc. R. Soc. A472 (2016) 20160270, 1-20. · Zbl 1371.76016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.