×

Well-posedness of the EPDiff equation with a pseudo-differential inertia operator. (English) Zbl 1437.58013

Authors’ abstract: We study the class of right-invariant, fractional-order Sobolev-type metrics on groups of diffeomorphisms of a compact manifold \(M\). Our main result concerns well-posedness properties for the corresponding Euler-Arnold equations, also called the EPDiff equations, which are of importance in mathematical physics and in the field of shape analysis and template registration. Depending on the order of the metric, we will prove both local and global well-posedness results for these equations. As a result of our analysis, we will also obtain new commutator estimates for elliptic pseudo-differential operators.

MSC:

58D05 Groups of diffeomorphisms and homeomorphisms as manifolds
35Q35 PDEs in connection with fluid mechanics

References:

[1] Atiyah, M. F.; Singer, I. M., The index of elliptic operators. IV, Ann. Math. (2), 93, 119-138 (1971) · Zbl 0212.28603
[2] Aubin, T., Nonlinear Analysis on Manifolds. Monge-Ampère Equations, Grundlehren der Mathematischen Wissenschaften, vol. 252 (1982), Springer-Verlag: Springer-Verlag New York · Zbl 0512.53044
[3] Bauer, M.; Bruveris, M.; Harms, P.; Michor, P. W., Smooth perturbations of the functional calculus and applications to Riemannian geometry on spaces of metrics (2018)
[4] Bauer, M.; Bruveris, M.; Kolev, B., Fractional Sobolev metrics on spaces of immersed curves, Calc. Var. Partial Differ. Equ., 57, 1, Article 27 pp. (2018) · Zbl 1384.58010
[5] Bauer, M.; Escher, J.; Kolev, B., Local and global well-posedness of the fractional order EPDiff equation on \(R^d\), J. Differ. Equ., 258, 6, 2010-2053 (Mar. 2015) · Zbl 1323.58007
[6] Bauer, M.; Harms, P.; Michor, P. W., Sobolev metrics on shape space of surfaces, J. Geom. Mech., 3, 4, 389-438 (2011) · Zbl 1262.58004
[7] Bauer, M.; Harms, P.; Michor, P. W., Sobolev metrics on the manifold of all Riemannian metrics, J. Differ. Geom., 94, 2, 187-208 (2013) · Zbl 1275.58007
[8] Bauer, M.; Harms, P.; Michor, P. W., Fractional Sobolev metrics on spaces of immersions (2019)
[9] Bauer, M.; Harms, P.; Preston, S. C., Vanishing distance phenomena and the geometric approach to SQG, Arch. Ration. Mech. Anal. (2018), in press
[10] Bauer, M.; Kolev, B.; Preston, S. C., Geometric investigations of a vorticity model equation, J. Differ. Equ., 260, 1, 478-516 (2016) · Zbl 1328.35163
[11] Bauer, M.; Modin, K., Semi-invariant Riemannian metrics in hydrodynamics (2018)
[12] Brenier, Y., The least action principle and the related concept of generalized flows for incompressible perfect fluids, J. Am. Math. Soc., 2, 225-255 (1989) · Zbl 0697.76030
[13] Brenier, Y., Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations, Commun. Pure Appl. Math., 52, 411-452 (1999) · Zbl 0910.35098
[14] Bruveris, M., Regularity of maps between Sobolev spaces, Ann. Glob. Anal. Geom., 52, 1, 11-24 (2017) · Zbl 1373.58005
[15] Bruveris, M., The \(L^2\)-metric on \(C^\infty(M, N)\) (Apr. 2018), arXiv e-prints
[16] Bruveris, M.; Vialard, F.-X., On completeness of groups of diffeomorphisms, J. Eur. Math. Soc., 19, 5, 1507-1544 (2017) · Zbl 1370.58003
[17] Camassa, R.; Holm, D. D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 11, 1661-1664 (1993) · Zbl 0972.35521
[18] Chemin, J.-Y., Équations d’Euler d’un fluide incompressible, (Facettes mathématiques de la mécanique des fluides (2010), Ed. Éc. Polytech.: Ed. Éc. Polytech. Palaiseau), 9-30 · Zbl 1210.76002
[19] Cismas, E.-C., Euler-Poincaré-Arnold equations on semi-direct products II, Discrete Contin. Dyn. Syst., 36, 11, 5993-6022 (2016) · Zbl 1352.58001
[20] Constantin, A.; Kolev, B., Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv., 78, 4, 787-804 (2003) · Zbl 1037.37032
[21] Constantin, A.; Lannes, D., The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192, 1, 165-186 (2009) · Zbl 1169.76010
[22] Constantin, P.; Lax, P. D.; Majda, A., A simple one-dimensional model for the three-dimensional vorticity equation, Commun. Pure Appl. Math., 38, 6, 715-724 (1985) · Zbl 0615.76029
[23] Constantin, P.; Majda, A. J.; Tabak, E., Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar, Nonlinearity, 7, 6, 1495 (1994) · Zbl 0809.35057
[24] Ebin, D. G., The manifold of Riemannian metrics, (Global Analysis. Global Analysis, Berkeley, Calif., 1968. Global Analysis. Global Analysis, Berkeley, Calif., 1968, Proc. Sympos. Pure Math., vol. XV (1970), Amer. Math. Soc.: Amer. Math. Soc. Providence, R.I.), 11-40 · Zbl 0205.53702
[25] Ebin, D. G.; Marsden, J. E., Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math. (2), 92, 102-163 (1970) · Zbl 0211.57401
[26] Ebin, D. G.; Marsden, J. E.; Fischer, A. E., Diffeomorphism groups, hydrodynamics and relativity, (Proceedings of the Thirteenth Biennial Seminar of the Canadian Mathematical Congress Differential Geometry and Applications, vol. 1. Proceedings of the Thirteenth Biennial Seminar of the Canadian Mathematical Congress Differential Geometry and Applications, vol. 1, Dalhousie Univ., Halifax, N.S., 1971 (1972), Canad. Math. Congr.: Canad. Math. Congr. Montreal, Que.), 135-279 · Zbl 0284.58002
[27] Egorov, Y. V.; Shubin, M. A., Partial Differential Equations VI: Elliptic and Parabolic Operators (1994), Springer-Verlag: Springer-Verlag Berlin, translated from the 1990 Russian original by Capinski, M., Cooke, R. · Zbl 0801.00007
[28] Eichhorn, J., Global Analysis on Open Manifolds (2007), Nova Science Publishers, Inc.: Nova Science Publishers, Inc. New York · Zbl 1188.58001
[29] Escher, J.; Kolev, B., Right-invariant Sobolev metrics of fractional order on the diffeomorphism group of the circle, J. Geom. Mech., 6, 3, 335-372 (2014) · Zbl 1308.58005
[30] Escher, J.; Kolev, B.; Wunsch, M., The geometry of a vorticity model equation, Commun. Pure Appl. Anal., 11, 4, 1407-1419 (July 2012) · Zbl 1372.58005
[31] Euler, L. P., Du mouvement de rotation des corps solides autour d’un axe variable, Mém. Acad. Sci. Berlin, 14, 154-193 (1765)
[32] Freed, D. S.; Groisser, D., The basic geometry of the manifold of Riemannian metrics and of its quotient by the diffeomorphism group, Mich. Math. J., 36, 3, 323-344 (1989) · Zbl 0694.58008
[33] Gay-Balmaz, F., Well-posedness of higher dimensional Camassa-Holm equations, Bull. Transilv. Univ. Braşov Ser. III, 2, 51, 55-58 (2009) · Zbl 1224.35342
[34] Grosse, N.; Schneider, C., Sobolev spaces on Riemannian manifolds with bounded geometry: general coordinates and traces, Math. Nachr., 286, 16, 1586-1613 (2013) · Zbl 1294.46031
[35] Grubb, G., Distributions and Operators, Graduate Texts in Mathematics, vol. 252 (2009), Springer: Springer New York · Zbl 1171.47001
[36] Holm, D. D.; Marsden, J. E., Momentum maps and measure-valued solutions (peakons, filaments, and sheets) for the EPDiff equation, (The Breadth of Symplectic and Poisson Geometry. The Breadth of Symplectic and Poisson Geometry, Progr. Math., vol. 232 (2005), Birkhäuser Boston: Birkhäuser Boston Boston, MA), 203-235
[37] Hörmander, L., The Analysis of Linear Partial Differential Operators. III. Pseudo-Differential Operators, Classics in Mathematics (2007), Springer-Verlag: Springer-Verlag Berlin · Zbl 1115.35005
[38] Inci, H.; Kappeler, T.; Topalov, P., On the Regularity of the Composition of Diffeomorphisms, Memoirs of the American Mathematical Society, vol. 226 (Mar. 2013), American Mathematical Society · Zbl 1293.58004
[39] Johnson, R. S., Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455, 63-82 (2002) · Zbl 1037.76006
[40] Khesin, B.; Misiołek, G., Euler equations on homogeneous spaces and Virasoro orbits, Adv. Math., 176, 1, 116-144 (2003) · Zbl 1017.37039
[41] Khesin, B.; Ovsienko, V., The super Korteweg-de Vries equation as an Euler equation, Funkc. Anal. Prilozh., 21, 4, 81-82 (1987) · Zbl 0639.58019
[42] Khesin, B.; Wendt, R., The Geometry of Infinite-Dimensional Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 51 (2009), Springer-Verlag: Springer-Verlag Berlin · Zbl 1160.22001
[43] Kolev, B., Local well-posedness of the EPDiff equation: a survey, J. Geom. Mech., 9, 2, 167-189 (June 2017) · Zbl 1362.58003
[44] Kouranbaeva, S., The Camassa-Holm equation as a geodesic flow on the diffeomorphism group, J. Math. Phys., 40, 2, 857-868 (1999) · Zbl 0958.37060
[45] Melo, S. T.; Schick, T.; Schrohe, E., Families index for Boutet de Monvel operators, Münster J. Math., 6, 343-364 (2013) · Zbl 1302.46059
[46] Michor, P.; Mumford, D., On Euler’s equation and ‘EPDiff’, J. Geom. Mech., 5, 3, 319-344 (Sept. 2013) · Zbl 1274.35277
[47] Milnor, J., Remarks on infinite-dimensional Lie groups, (Relativity, Groups and Topology, II. Relativity, Groups and Topology, II, Les Houches, 1983 (1984), North-Holland: North-Holland Amsterdam), 1007-1057 · Zbl 0594.22009
[48] Misiołek, G., A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys., 24, 3, 203-208 (1998) · Zbl 0901.58022
[49] Misiołek, G.; Preston, S. C., Fredholm properties of Riemannian exponential maps on diffeomorphism groups, Invent. Math., 179, 1, 191-227 (2010) · Zbl 1183.58006
[50] Modin, K., Generalized Hunter-Saxton equations, optimal information transport, and factorization of diffeomorphisms, J. Geom. Anal., 25, 2, 1306-1334 (feb 2014) · Zbl 1330.58009
[51] Omori, H., On the group of diffeomorphisms on a compact manifold, (Global Analysis. Global Analysis, Berkeley, Calif., 1968. Global Analysis. Global Analysis, Berkeley, Calif., 1968, Proc. Sympos. Pure Math., vol. XV (1970), Amer. Math. Soc.: Amer. Math. Soc. Providence, R.I.), 167-183 · Zbl 0214.48805
[52] Omori, H., Infinite-Dimensional Lie Groups, Translations of Mathematical Monographs, vol. 158 (1997), American Mathematical Society: American Mathematical Society Providence, RI, translated from the 1979 Japanese original and revised by the author · Zbl 0871.58007
[53] Ruzhansky, M.; Turunen, V., Pseudo-Differential Operators and Symmetries. Background Analysis and Advanced Topics, Pseudo-Differential Operators. Theory and Applications, vol. 2 (2010), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 1193.35261
[54] Shkoller, S., Geometry and curvature of diffeomorphism groups with \(H^1\) metric and mean hydrodynamics, J. Funct. Anal., 160, 1, 337-365 (1998) · Zbl 0933.58010
[55] Shkoller, S., Analysis on groups of diffeomorphisms of manifolds with boundary and the averaged motion of a fluid, J. Differ. Geom., 55, 1, 145-191 (2000) · Zbl 1044.35061
[56] Shnirelman, A., Generalized fluid flows, their approximation and applications, Geom. Funct. Anal., 4, 5, 586-620 (1994) · Zbl 0851.76003
[57] Shnirelman, A. I., The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid, Mat. Sb. (N.S.), 128, 170(1), 82-109 (1985), 144 · Zbl 0725.58005
[58] Tiğlay, F.; Vizman, C., Generalized Euler-Poincaré equations on Lie groups and homogeneous spaces, orbit invariants and applications, Lett. Math. Phys., 97, 1, 45-60 (2011) · Zbl 1219.35198
[59] Triebel, H., Theory of Function Spaces II (1992), Birkhäuser Boston · Zbl 0763.46025
[60] Trouvé, A.; Younes, L., Local geometry of deformable templates, SIAM J. Math. Anal., 37, 1, 17-59 (2005), (electronic) · Zbl 1090.58008
[61] Washabaugh, P., The SQG equation as a geodesic equation, Arch. Ration. Mech. Anal., 222, 3, 1269-1284 (2016) · Zbl 1348.35178
[62] Wunsch, M., On the geodesic flow on the group of diffeomorphisms of the circle with a fractional Sobolev right-invariant metric, J. Nonlinear Math. Phys., 17, 1, 7-11 (2010) · Zbl 1200.58009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.