×

A new approach on numerical solutions of the improved Boussinesq type equation using quadratic B-spline Galerkin finite element method. (English) Zbl 1410.65381

Summary: In the present manuscript, some numerical solutions of an improved Boussinesq type equation are obtained by means of quadratic B-spline Galerkin finite element method. Then, error norms \(L_{2}\) and \(L_{\infty}\) have been calculated to test the accuracy of the current method. In the manuscript, solitary wave movement and interaction of solitary-antisolitary waves are considered as test problems.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
Full Text: DOI

References:

[1] Jing, J. C.; Li, B., Exact analytical solutions for the (2+1)-dimensional generalized variable-coefficients Gross-Pitaevskii equation, Chin. J. Phys., 50, 3, 413-424 (2012)
[2] Majda, A., Introduction to PDEs and waves for the atmosphere and ocean, Courant Lecture Notes in Mathematics (2003), American Mathematical Society: American Mathematical Society New York · Zbl 1278.76004
[3] Dehghan, M.; Salehi, R., A meshless based numerical technique for traveling solitary wave solution of Boussinesq equation, Appl. Math. Model., 36, 1939-1956 (2012) · Zbl 1243.76069
[4] Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method (1994), Kluwer Academic Publication: Kluwer Academic Publication Boston · Zbl 0802.65122
[5] Hosseini, M. M., Adomian decomposition method with Chebyshev polynomials, Appl. Math. Comput., 175, 1685-1693 (2006) · Zbl 1093.65073
[6] Liano, S. J., The Proposed Homotophy Analysis Technique for the Solution of Nonlinear Problems (Ph.D. thesis) (1992), Shanghai Jiao Tong University
[7] Nadeem, S.; Hussain, A.; Khan, M., HAM solutions for boundary layer flow in the region of the stagnation point towards a stretching sheet, Commun. Nonlinear Sci. Numer. Simul., 15, 475-481 (2010) · Zbl 1221.65282
[8] Nadeem, S.; Hussain, A.; Khan, M., Stagnation flow of a Jeffrey fluid over a shrinking sheet, Z. Naturforsch., 65a, 540-548 (2010)
[9] He, J. H., Application of homotopy perturbation method to nonlinear wave equations, Chaos Soliton Fractals, 26, 3, 695-700 (2005) · Zbl 1072.35502
[10] Wazwaz, A. M., The Variational iteration method for solving linear and nonlinear system of PDEs, Comput. Math. Appl., 54, 7-8, 895-902 (2007) · Zbl 1145.35312
[11] Ghorbani, A., Beyond Adomian’s polynomials: he polynomials, Chaos Solitons Fractals, 39, 1486-1492 (2009) · Zbl 1197.65061
[12] Khan, M.; Hussain, M., Application of Laplace decomposition method on semi-infinite domain, Numer. Algorithm, 56, 211-218 (2011) · Zbl 1428.35366
[13] Khan, M.; Gondal, M. A., A new analytical solution of foam drainage equation by Laplace decomposition method, J. Adv. Res. Differ. Eqs., 2, 53-64 (2010)
[14] Hussian, M.; Khan, M., Modified Laplace decomposition method, App. Math. Sci., 4, 36, 1769-1783 (2010) · Zbl 1208.35006
[15] Khan, M.; Gondal, M. A., New modified Laplace decomposition algorithm for Blasius flow equation, Adv. Res. Sci. Comput., 2, 35-43 (2010)
[16] Boussinesq, J., Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., 17, 55-108 (1872) · JFM 04.0493.04
[17] Lee, J.; Sakthivel, R., Exact travelling wave solutions of a variety of Boussinesq- Like equations, Chin. J. Phys., 52, 3, 939-957 (2013) · Zbl 07845063
[18] Bogolubsky, I. L., Some examples of inelastic soliton interaction, Comput. Phys. Commun., 13, 149-155 (1977)
[19] Bogolubsky, I. L., JETP Lett., 24, 160 (1976)
[20] Iskandar, L.; Jain, P. C., Numerical solutions of the improved Boussinesq equation, Ind. Acad. Sci. (Math. Sci.), 89, 171-181 (1980) · Zbl 0451.76016
[21] El-Zoheiry, H., Numerical study of the improved Boussinesq equation, Chaos Solitons Fractals, 14, 377-384 (2002) · Zbl 0999.65090
[22] Inc, M.; Evans, D. J., A different approach for soliton solution of the improved Boussinesq equation, Int. J. Comput. Math. Appl., 81, 3, 313-323 (2004) · Zbl 1076.65088
[23] Wazwaz, A. M., Nonlinear variants of the improved Boussinesq equation with compact and noncompact structures, Comput. Appl. Math., 49, 565-574 (2005) · Zbl 1070.35043
[24] Bratsos, A. G., A predictor-corrector scheme for the improved Boussinesq equation, Chaos Solitons Fractals, 40, 2083-2094 (2009) · Zbl 1198.65162
[25] Bratsos, A. G., A second order numerical scheme for the improved Boussinesq Equation, Phys. Lett. A, 370, 145-147 (2007) · Zbl 1209.65085
[26] Lin, Q.; Wu, Y. H.; Loxton, R.; Lai, S., Linear B-spline element method for the improved Boussinesq equation, Comput. Appl. Math., 224, 658-667 (2009) · Zbl 1158.65074
[27] Irk, D.; Dag, I., Numerical simulation of the improved Boussinesq equation, Numer. Methods Partial Differ. Equ., 26, 1316-1327 (2010) · Zbl 1426.76473
[28] Shokri, A.; Dehghan, M., A not-a-knot meshless method using radial basis functions and predictor-corrector scheme to the numerical solution of improved Boussinesq equation, Comput. Phys. Commun., 181, 12, 1990-2000 (2010) · Zbl 1426.76569
[29] Zhang, Z.; Lu, F., Quadratic finite volume element method for the improved Boussinesq equation, J. Math. Phys., 53, 013505 (2012) · Zbl 1273.35246
[30] Wang, Q.; Zhang, Z.; Zhu, Q., Numerical simulation of the stochastic damped improved Boussinesq equation, J. Math. Phys., 54, 1-18 (2013) · Zbl 1290.35232
[31] Iskandar, L.; Jain, P. C., Numerical solution of equations having inelastic solitary wave interaction, Comput. Math. Appl., 6, 4, 373-383 (1980) · Zbl 0444.76011
[32] Makhankov, V. G., Dynamics of classical solitons, Phys. Rep., 35, 1-128 (1978)
[33] Prenter, P. M., Splines and Variational Methods (1975), Wiley: Wiley New York · Zbl 0344.65044
[34] Jain, M. K., Numerical Solution of Differential Equations (1983), Wiley: Wiley New York, NY · Zbl 0556.65077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.