×

A new class of distance-optimal binary cyclic codes and their duals. (English) Zbl 1520.94095

Let \(q=2^m, m\in\mathbb{N},\) an \([n,k,d]_q\) binary linear code \(\mathcal C\) is a \(k\)-dimensional subspace of \(\mathbb{F}_q^n\) with minimal Hamming distance \(d.\) The code cyclic if \((c_0,\ldots,c_{n-1})\in\mathcal C\) implies \((c_{n-1}, c_0,\ldots,c_{n-2})\in\mathcal C.\)
This work explores a new class of binary cyclic codes \(\mathcal C_{(u,v)}\) with parameters \([2^m-1, 2^m-m-9, 4],\) where \(m = 8k\) for a positive integer \(k\ge 2\) and \((u, v) = (1, \frac{2^m-1}{17})\) with two nonzeros \(\alpha^{-u}\) and \(\alpha^{-v}.\) The value distribution of \(S_{u,v}(a, b)\) is calculated. This is done by considering four cases: (1) \((a, b) = (0, 0);\) (2) \((a, 0)\in \mathbb{F}_{2^m}^\ast\times\{0\};\) (3) \((0, b) \in\{0\}\times \mathbb{F}_{2^8}^\ast;\) (4) \((a, b)\in \mathbb{F}_{2^m}^\ast\times\mathbb{F}_{2^8}^\ast.\) For this particular case, it is also shown that the code \(\mathcal C_{(u,v)}\) is distance-optimal with respect to the sphere packing bound.
The weight distribution of the dual of \(\mathcal C_{(u,v)}\) is completely determined based on some results on Gaussian periods.

MSC:

94B15 Cyclic codes
05B05 Combinatorial aspects of block designs
51E10 Steiner systems in finite geometry
Full Text: DOI

References:

[1] Carlet, C.; Ding, C.; Yuan, J., Linear codes from highly nonlinear functions and their secret sharing schemes, IEEE Trans. Inf. Theory, 51, 6, 2089-2102 (2005) · Zbl 1192.94114 · doi:10.1109/TIT.2005.847722
[2] Delsarte, P., On subfield subcodes of modified Reed-Solomon codes, IEEE Trans. Inf. Theory, 21, 5, 575-576 (1975) · Zbl 0308.94004 · doi:10.1109/TIT.1975.1055435
[3] Ding, C.; Yang, J., Hamming weights in irreducible cyclic codes, Discrete Math., 313, 4, 434-446 (2013) · Zbl 1269.94040 · doi:10.1016/j.disc.2012.11.009
[4] Ding, C.; Ling, S., A \(q\)-polynomial approach to cyclic codes, Finite Fields Appl., 20, 3, 1-14 (2013) · Zbl 1308.94107 · doi:10.1016/j.ffa.2012.12.005
[5] Ding, C., Cyclic codes from some monomials and trinomials, SIAM J. Discrete Math., 27, 4, 1977-1994 (2013) · Zbl 1306.94114 · doi:10.1137/120882275
[6] Ding, C.; Helleseth, T., Optimal ternary cyclic codes from monomials, IEEE Trans. Inf. Theory, 59, 9, 5898-5904 (2013) · Zbl 1364.94652 · doi:10.1109/TIT.2013.2260795
[7] Ding, C.; Wang, X., A coding theory construction of new systematic authentication codes, Theor. Comput. Sci., 330, 1, 81-99 (2005) · Zbl 1078.68030 · doi:10.1016/j.tcs.2004.09.011
[8] Ding, C.; Yang, Y.; Tang, X., Optimal sets of frequency hopping sequences from linear cyclic codes, IEEE Trans. Inf. Theory, 56, 7, 3605-3612 (2010) · Zbl 1366.94636 · doi:10.1109/TIT.2010.2048504
[9] Dobbertin, H.; Helleseth, T.; Kumar, V.; Martinsen, H., Ternary \(m\)-sequences with three-valued cross-correlation function: new decimations of Welch and Niho type, IEEE Trans. Inf. Theory, 47, 4, 1473-1481 (2001) · Zbl 1039.94004 · doi:10.1109/18.923728
[10] Feng, T., On cyclic codes of length \(2^{2^r}-1\) with two zeros whose dual codes have three weights, Des. Codes Cryptogr., 62, 3, 253-258 (2012) · Zbl 1282.94096 · doi:10.1007/s10623-011-9514-0
[11] Huffman, WC; Pless, V., Fundamentals of Error-Correcting Codes (2003), Cambridge: Cambridge University Press, Cambridge · Zbl 1099.94030 · doi:10.1017/CBO9780511807077
[12] Kløve, T., Codes for Error Detection (2007), New Jersey: World Scientific Publishing Co., Inc.,, New Jersey · Zbl 1131.94002 · doi:10.1142/6400
[13] Li, C.; Yue, Q.; Li, F., Weight distributions of cyclic codes with respect to pairwise coprime order elements, Finite Fields Appl., 28, 94-114 (2014) · Zbl 1366.94641 · doi:10.1016/j.ffa.2014.01.009
[14] Li, C.; Li, N.; Helleseth, T.; Ding, C., The weight distributions of several classes of cyclic codes from APN monomials, IEEE Trans. Inf. Theory, 60, 8, 4710-4721 (2014) · Zbl 1360.94402 · doi:10.1109/TIT.2014.2329694
[15] Li, F.; Yue, Q.; Li, C., The minimum Hamming distances of irreducible cyclic codes, Finite Fields Appl., 29, 225-242 (2014) · Zbl 1332.94105 · doi:10.1016/j.ffa.2014.05.003
[16] Li, N.; Li, C.; Helleseth, T.; Ding, C.; Tang, X., Optimal ternary cyclic codes with minimum distance four and five, Finite Fields Appl., 30, 100-120 (2014) · Zbl 1354.94067 · doi:10.1016/j.ffa.2014.06.001
[17] Luo, R.; Wei, L.; Cheng, F.; Du, X., A class of binary cyclic codes with four weights., IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 100-A, 965-968 (2017) · doi:10.1587/transfun.E100.A.965
[18] Lint, JH, Introduction to Coding Theory (1999), Berlin: Springer-Verlag, Berlin · Zbl 0936.94014 · doi:10.1007/978-3-642-58575-3
[19] Pless, V., Power moment identities on weight distributions in error correcting codes, Inf. Control, 6, 147-152 (1963) · Zbl 0149.37905 · doi:10.1016/S0019-9958(63)90189-X
[20] Schmidt, B.; White, C., All two-weight irreducible cyclic codes, Finite Fields Appl., 8, 1-17 (2002) · Zbl 1023.94016 · doi:10.1006/ffta.2000.0293
[21] Yang, J.; Xiong, M.; Ding, C.; Luo, J., Weight distribution of a class of cyclic codes with arbitrary number of zeros, IEEE Trans. Inf. Theory, 59, 9, 5985-5993 (2013) · Zbl 1364.94665 · doi:10.1109/TIT.2013.2266731
[22] Zheng, D.; Wang, X.; Hu, L.; Zeng, X., The weight distributions of two classes of \(p\)-ary cyclic codes, Finite Fields Appl., 29, 202-224 (2014) · Zbl 1332.94106 · doi:10.1016/j.ffa.2014.05.001
[23] Zeng, X.; Shan, J.; Hu, L., A triple-error-correcting cyclic code from the Gold and Kasami-Welch APN power functions, Finite Fields Appl., 18, 1, 70-92 (2012) · Zbl 1246.94053 · doi:10.1016/j.ffa.2011.06.005
[24] Zhou, Z.; Ding, C., A class of three-weight cyclic codes, Finite Fields Appl., 25, 79-93 (2014) · Zbl 1305.94112 · doi:10.1016/j.ffa.2013.08.005
[25] Zhou, Z.; Ding, C., Seven classes of three-weight cyclic codes, IEEE Trans. Commun., 61, 10, 4120-4126 (2013) · doi:10.1109/TCOMM.2013.072213.130107
[26] Zeng, X.; Fan, C.; Zeng, Q.; Qi, Y., Two classes of binary cyclic codes and their weight distributions, Appl. Algebra Eng. Commun. Comput. (2019) · Zbl 1469.94159 · doi:10.1007/s00200-019-00400-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.