×

The Zassenhaus lemma in star-regular categories. (English) Zbl 1428.18005

The Noether isomorphism theorems and the Zassenhaus Lemma are well known in group theory. O. Wyler [Arch. Math. 22, No. 1, 561–569 (1971; Zbl 0254.18004)] investigated a large class of pointed categories in which this theorems remain valid. W. Tholen [Relative Bildzerlegungen und algebraische Kategorien. Phd Thesis (1974)] gave a non-pointed version of this results in his doctoral dissertation. The authors of the paper under this review research this results in the framework of star-regular categories. They introduced some property \((\ast)\) and prove the isomorphism theorems. The Zassenhaus Lemma is established in a suitable categorical context. They get the new result in the category of cocommutative Hopf algebras also (the Zassenhaus Lemma).

MSC:

18A32 Factorization systems, substructures, quotient structures, congruences, amalgams
18A20 Epimorphisms, monomorphisms, special classes of morphisms, null morphisms
18A30 Limits and colimits (products, sums, directed limits, pushouts, fiber products, equalizers, kernels, ends and coends, etc.)
18C99 Categories and theories
16T05 Hopf algebras and their applications

Citations:

Zbl 0254.18004

References:

[1] N. Andruskiewitsch, Notes on extensions of Hopf algebras. Canad. J. Math. 48 (1), 3-42, 1996. · Zbl 0857.16033
[2] M. Barr, P.A. Grillet, D. H. van Osdol, Exact categories and categories of sheaves, Springer Lecture Notes in Mathematics 236, 1971. · Zbl 0223.18009
[3] F. Borceux, M. Grandis, Jordan-H¨older, Modularity and Distributivity in NonCommutative Algebra, J. Pure Appl. Alg. 208-2, 665-689, 2007. · Zbl 1109.18006
[4] D. Bourn, The denormalized 3 × 3 lemma, J. Pure Appl. Alg. 177, 113-129, 2003. · Zbl 1032.18007
[5] A. Carboni, G.M. Kelly, M.C. Pedicchio, Some remarks on Maltsev and Goursat categories, Appl. Categ. Struct. 1, 385-421, 1993. · Zbl 0799.18002
[6] C. Ehresmann, Sur une notion g´en´erale de cohomologie, C. R. Acad. Sci. Paris 259, 2050-2053, 1964. · Zbl 0242.18015
[7] T. Everaert, M. Gran, Monotone-light factorisation systems and torsion theories, Bulletin des Sciences Math´ematiques 137-8, 996-1006, 2013. · Zbl 1284.18024
[8] M. Gran, Z. Janelidze, D. Rodelo, 3 × 3 Lemma for star-exact sequences, Homology, Homotopy Appl. 14-2, 1-22, 2012. · Zbl 1258.18011
[9] M. Gran, Z. Janelidze, A. Ursini, A good theory of ideals in regular multi-pointed categories, J. Pure Appl. Alg. 216, 1905-1919, 2012. · Zbl 1257.18011
[10] M. Gran, Z. Janelidze, D. Rodelo, A. Ursini, Symmetry of regular diamonds, the Goursat property, and subtractivity, Th. Appl. Categ. 27, 80-96, 2012. · Zbl 1252.18022
[11] M. Gran, G. Kadjo, and J. Vercruysse. A torsion theory in the category of cocommutative Hopf algebras. Appl. Categ. Struct., 24, 269-282, 2016. · Zbl 1351.18013
[12] M. Gran, O. Ngaha Ngaha, Effective descent morphisms in star-regular categories, Homology, Homotopy Appl. 15-2, 127-144, 2013. · Zbl 1285.18001
[13] M. Gran, F. Sterck and J. Vercruysse A semi-abelian extension of a theorem by Takeuchi. J. Pure Appl. Algebra, Vol. 223, no. 10, 4171-4190, 2019. · Zbl 1440.18013
[14] M. Grandis, On the categorical foundations of homological and homotopical algebra, Cah. Top. G´eom. Diff. Cat´eg. 33, 135-175, 1992. · Zbl 0814.18006
[15] G. Janelidze, L. M´arki, W. Tholen, Semi-abelian categories, J. Pure. Appl. Alg. 168, 367-386, 2002. · Zbl 0993.18008
[16] G. Janelidze, L. M´arki, W. Tholen, A. Ursini, Ideal determined categories, Cah. Top. G´eom. Diff. Cat´eg. 51, 113-124, 2010.
[17] Z. Janelidze, The pointed subobject functor, 3 × 3 lemmas and subtractivity of spans, Th. Appl. Categ. 23, 221-242, 2010. · Zbl 1234.18009
[18] S. Mac Lane, G. Birkhoff, Algebra Second edition. Macmillan, Inc., New York; CollierMacmillan Publishers, London, 1979. · Zbl 0863.00001
[19] S. Natale, Jordan-H¨older Theorem for finite dimensional Hopf algebras. Proc. Amer. Math. Soc. 143, 5195-5211, 2015. · Zbl 1343.16026
[20] M.E. Sweedler, Hopf algebras, Benjamin New York, 1969. · Zbl 0194.32901
[21] W. Tholen, Categorical algebra without axioms?, Talk in CATALG2011, Gargnano (http://math.unipa.it/metere/Gargnano2011/index.html) 2011.
[22] W. Tholen, Relative Bildzerlegungen und algebraische Kategorien, Phd Thesis, 1974.
[23] O. Wyler, The Zassenhaus lemma for categories, Arch. Math. XXII, 561-569, 1971. Institut de Recherche en Math´ematique et Physique, Universit´e catholique de Louvain, Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium Email: omngaha@yahoo.fr florence.sterck@uclouvain.be · Zbl 0254.18004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.