×

Numerical approximation of one- and two-dimensional coupled nonlinear Schrödinger equation by implementing barycentric Lagrange interpolation polynomial DQM. (English) Zbl 1512.65145

Summary: In this paper, a new numerical method named Barycentric Lagrange interpolation-based differential quadrature method is implemented to get numerical solution of 1D and 2D coupled nonlinear Schrödinger equations. In the present study, spatial discretization is done with the aid of Barycentric Lagrange interpolation basis function. After that, a reduced system of ordinary differential equations is solved using strong stability, preserving the Runge-Kutta 43 method. In order to check the accuracy of the proposed scheme, we have used the formula of \(L_\infty\) error norm. The matrix stability analysis method is implemented to test the proposed method’s stability, which confirms that the proposed scheme is unconditionally stable. The present scheme produces better results, and it is easy to implement to obtain numerical solutions of a class of partial differential equations.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
35Q55 NLS equations (nonlinear Schrödinger equations)
Full Text: DOI

References:

[1] Hasegawa, A., Optical Solution in Fiber (1989), Berlin, Heidelberg, Germany: Springer-Verlag, Berlin, Heidelberg, Germany
[2] Hasegawa, A.; Tappert, F., Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion, Applied Physics Letters, 23, 3, 142-144 (1973) · doi:10.1063/1.1654836
[3] Blair, S.; Wagner, K.; McLeod, R., Material figures of merit for spatial soliton interactions in the presence of absorption, Journal of the Optical Society of America B, 13, 10, 2141-2153 (1996) · doi:10.1364/josab.13.002141
[4] Channell, P. J.; Scovel, C., Symplectic integration of Hamiltonian systems, Nonlinearity, 3, 2, 231 (1990) · Zbl 0704.65052
[5] Yang, J., Multisoliton perturbation theory for the Manakov equations and its applications to non-linear optics, Physical Review E, 59, 2, 2393 (1999)
[6] Manakov, S. V., Non-linear Fraunhofer diffraction, Journal of Experimental and Theoretical Physics, 65, 4, 10 (1973)
[7] Sophocleous, C.; Parker, D. F., Pulse collisions and polarisation conversion for optical fibres, Optics Communications, 112, 3-4, 214-224 (1994) · doi:10.1016/0030-4018(94)00339-4
[8] Yang, J.; Tan, Y., Fractal dependence of vector-soliton collisions in birefringent fibers, Physics Letters A, 280, 3, 129-138 (2001) · Zbl 0972.78013 · doi:10.1016/s0375-9601(01)00040-8
[9] Sun, J. Q.; Gu, X. Y.; Ma, Z. Q., Numerical study of the soliton waves of the coupled non-linear Schrödinger system, Physica D: Non-linear Phenomena, 196, 3-4, 311-328 (2004) · Zbl 1056.65083 · doi:10.1016/j.physd.2004.05.010
[10] Ismail, M. S.; Ashi, H. A.; Al-Rakhemy, F., ADI method for solving the two-dimensional coupled non-linear Schrödinger equation, AIP Conference Proceedings, 1648, 1 (2015)
[11] Ismail, M. S.; Taha, T. R., Numerical simulation of coupled non-linear Schrödinger equation, Mathematics and Computers in Simulation, 56, 6, 547-562 (2001) · Zbl 0972.78022
[12] Dehghan, M.; Abbaszadeh, M.; Mohebbi, A., Numerical solution of system of N-coupled non-linear Schrödinger equations via two variants of the meshless local Petrov-Galerkin (MLPG) method, Computer Modeling in Engineering & Sciences, 100, 5, 399-444 (2014) · Zbl 1357.65187
[13] Xu, Y.; Shu, C. W., Local discontinuous Galerkin methods for non-linear Schrödinger equations, Journal of Computational Physics, 205, 1, 72-97 (2005) · Zbl 1072.65130
[14] Aydin, A.; Karasözen, B., Multi-symplectic integration of coupled non-linear Schrödinger system with soliton solutions, International Journal of Computer Mathematics, 86, 5, 864-882 (2009) · Zbl 1165.65084
[15] Gao, Z.; Song, S.; Duan, J., The application of (2 + 1)-dimensional coupled nonlinear Schrödinger equations with variable coefficients in optical fibers, Optik, 172, 953-967 (2018) · doi:10.1016/j.ijleo.2018.06.048
[16] Zhang, H.-Q.; Meng, X.-H.; Xu, T.; Li, L.-L.; Tian, B., Interactions of bright solitons for the (2 + 1)-dimensional coupled nonlinear Schrödinger equations from optical fibres with symbolic computation, Physica Scripta, 75, 4, 537-542 (2007) · Zbl 1110.35341 · doi:10.1088/0031-8949/75/4/028
[17] Wang, H., Numerical studies on the split-step finite difference method for non-linear Schrödinger equations, Applied Mathematics and Computation, 170, 1, 17-35 (2005) · Zbl 1082.65570
[18] Ismail, M. S.; Taha, T. R., A linearly implicit conservative scheme for the coupled non-linear Schrödinger equation, Mathematics and Computers in Simulation, 74, 4-5, 302-311 (2007) · Zbl 1112.65079 · doi:10.1016/j.matcom.2006.10.020
[19] Ismail, M. S., Numerical solution of coupled non-linear Schrödinger equation by Galerkin method, Mathematics and Computers in Simulation, 78, 4, 532-547 (2008) · Zbl 1145.65075
[20] Sonnier, W. J.; Christov, C. I., Strong coupling of Schrödinger equations: Conservative scheme approach, Mathematics and Computers in Simulation, 69, 5-6, 514-525 (2005) · Zbl 1119.65396 · doi:10.1016/j.matcom.2005.03.016
[21] Ismail, M. S., A fourth-order explicit schemes for the coupled non-linear Schrödinger equation, Applied Mathematics and Computation, 196, 1, 273-284 (2008) · Zbl 1133.65063
[22] Sweilam, N. H.; Al-Bar, R. F., Variational iteration method for coupled non-linear Schrödinger equations, Computers & Mathematics with Applications, 54, 7-8, 993-999 (2007) · Zbl 1141.65387 · doi:10.1016/j.camwa.2006.12.068
[23] Sun, J. Q.; Qin, M. Z., Multi-symplectic methods for the coupled 1D non-linear Schrödinger system, Computer Physics Communications, 155, 3, 221-235 (2003) · Zbl 1196.65195
[24] Abazari, R.; Abazari, R., Numerical study of some coupled PDEs by using differential transformation method, Proceedings of World Academy of Science, Engineering and Technology, 66, 52-59 (2010)
[25] Bellman, R.; Kashef, B. G.; Casti, J., Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations, Journal of Computational Physics, 10, 1, 40-52 (1972) · Zbl 0247.65061 · doi:10.1016/0021-9991(72)90089-7
[26] Quan, J. R.; Chang, C. T., New insights in solving distributed system equations by the quadrature method-I. Analysis, Computers & Chemical Engineering, 13, 7, 779-788 (1989) · doi:10.1016/0098-1354(89)85051-3
[27] Quan, J. R.; Chang, C.-T., New insights in solving distributed system equations by the quadrature method-II. Numerical experiments, Computers & Chemical Engineering, 13, 9, 1017-1024 (1989) · doi:10.1016/0098-1354(89)87043-7
[28] Shu, C.; Richards, B. E., High resolution of natural convection in a square cavity by generalized differential quadrature, Proceedings of the 3rd International Conference on Advances in Numeric Methods in Engineering: Theory and Application
[29] Shu, C., Generalized differential-integral quadrature and application to the simulation of incompressible viscous flows including parallel computation (1991)
[30] Shu, C.; Chew, Y. T., Fourier expansion‐based differential quadrature and its application to Helmholtz eigenvalue problems, Communications in Numerical Methods in Engineering, 13, 8, 643-653 (1997) · Zbl 0886.65109
[31] Shu, C.; Xue, H., Explicit computation of weighting coefficients in the harmonic differential quadrature, Journal of Sound and Vibration, 204, 3, 549-555 (1997) · doi:10.1006/jsvi.1996.0894
[32] Jiwari, R.; Mittal, R. C.; Sharma, K. K., A numerical scheme based on weighted average differential quadrature method for the numerical solution of Burgers’ equation, Applied Mathematics and Computation, 219, 12, 6680-6691 (2013) · Zbl 1335.65070
[33] Mittal, R. C.; Dahiya, S., A comparative study of modified cubic B-spline differential quadrature methods for a class of non-linear viscous wave equations, Engineering Computations, 35, 12 (2018) · doi:10.1108/ec-06-2016-0188
[34] Arora, G.; Singh, B. K., Numerical solution of Burgers’ equation with modified cubic B-spline differential quadrature method, Applied Mathematics and Computation, 224, 166-177 (2013) · Zbl 1334.65031
[35] Mittal, R. C.; Dahiya, S., Numerical simulation on hyperbolic diffusion equations using modified cubic B-spline differential quadrature methods, Computers & Mathematics with Applications, 70, 5, 737-749 (2015) · Zbl 1443.65277
[36] Jiwari, R.; Pandit, S.; Mittal, R. C., Numerical simulation of two-dimensional sine-Gordon solitons by differential quadrature method, Computer Physics Communications, 183, 3, 600-616 (2012) · Zbl 1264.65173 · doi:10.1016/j.cpc.2011.12.004
[37] Jiwari, R.; Pandit, S.; Mittal, R. C., A differential quadrature algorithm for the numerical solution of the second-order one dimensional hyperbolic telegraph equation, International Journal of Nonlinear Science, 13, 3, 259-266 (2012) · Zbl 1394.65101
[38] Jiwari, R.; Pandit, S.; Mittal, R. C., A differential quadrature algorithm to solve the two dimensional linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions, Applied Mathematics and Computation, 218, 13, 7279-7294 (2012) · Zbl 1246.65174 · doi:10.1016/j.amc.2012.01.006
[39] Mittal, R. C.; Bhatia, R., A numerical study of two dimensional hyperbolic telegraph equation by modified B-spline differential quadrature method, Applied Mathematics and Computation, 244, 976-997 (2014) · Zbl 1336.65178 · doi:10.1016/j.amc.2014.07.060
[40] Shukla, H. S.; Tamsir, M.; Jiwari, R.; Srivastava, V. K., A numerical algorithm for computation modelling of 3D non-linear wave equations based on exponential modified cubic B-spline differential quadrature method, International Journal of Computer Mathematics, 95, 4, 752-766 (2018) · Zbl 1387.65009
[41] Korkmaz, A.; Dağ, İ., A differential quadrature algorithm for simulations of non-linear Schrödinger equation, Computers & Mathematics with Applications, 56, 9, 2222-2234 (2008) · Zbl 1165.65393
[42] Korkmaz, A.; Dağ, İ., Solitary wave simulations of complex modified Korteweg-de Vries equation using differential quadrature method, Computer Physics Communications, 180, 9, 1516-1523 (2009) · Zbl 07872394
[43] Korkmaz, A.; Dağ, İ., Cubic B‐spline differential quadrature methods for the advection‐diffusion equation, International Journal of Numerical Methods for Heat & Fluid Flow (2012) · Zbl 1357.65216 · doi:10.1108/09615531211271844
[44] Korkmaz, A.; Dağ, İ., Shock wave simulations using sinc differential quadrature method, Engineering Computations, 28, 6, 654-674 (2011) · Zbl 1284.76292 · doi:10.1108/02644401111154619
[45] Mittal, R. C.; Rohila, R., Numerical simulation of reaction-diffusion systems by modified cubic B-spline differential quadrature method, Chaos, Solitons & Fractals, 92, 9-19 (2016) · Zbl 1372.65285
[46] Mittal, R. C.; Dahiya, S., Numerical simulation of three-dimensional telegraphic equation using cubic B-spline differential quadrature method, Applied Mathematics and Computation, 313, 442-452 (2017) · Zbl 1427.65321 · doi:10.1016/j.amc.2017.06.015
[47] Berrut, J. P.; Trefethen, L. N., Barycentric Lagrange interpolation, SIAM Review, 46, 3, 501-517 (2004) · Zbl 1061.65006
[48] Berrut, J. P.; Klein, G., Recent advances in linear barycentric rational interpolation, Journal of Computational and Applied Mathematics, 259, 95-107 (2014) · Zbl 1291.65036
[49] Güttel, S.; Klein, G., Convergence of linear barycentric rational interpolation for analytic functions, SIAM Journal on Numerical Analysis, 50, 5, 2560-2580 (2012) · Zbl 1259.65014
[50] Ma, W.; Zhang, B.; Ma, H., A meshless collocation approach with barycentric rational interpolation for two-dimensional hyperbolic telegraph equation, Applied Mathematics and Computation, 279, 236-248 (2016) · Zbl 1410.65399 · doi:10.1016/j.amc.2016.01.022
[51] Liu, H.; Huang, J.; Pan, Y.; Zhang, J., Barycentric interpolation collocation methods for solving linear and non-linear high-dimensional Fredholm integral equations, Journal of Computational and Applied Mathematics, 327, 141-154 (2018) · Zbl 1372.65346
[52] Liu, H.; Huang, J.; Zhang, W.; Ma, Y., Meshfree approach for solving multi-dimensional systems of Fredholm integral equations via barycentric Lagrange interpolation, Applied Mathematics and Computation, 346, 295-304 (2019) · Zbl 1429.65316 · doi:10.1016/j.amc.2018.10.024
[53] Higham, N. J., The numerical stability of barycentric Lagrange interpolation, IMA Journal of Numerical Analysis, 24, 4, 547-556 (2004) · Zbl 1067.65016 · doi:10.1093/imanum/24.4.547
[54] Berrut, J. P.; Mittelmann, H. D., Matrices for the direct determination of the barycentric weights of rational interpolation, Journal of Computational and Applied Mathematics, 78, 2, 355-370 (1997) · Zbl 0870.65006
[55] Lawrence, P. W.; Corless, R. M., Stability of rootfinding for barycentric Lagrange interpolants, Numerical Algorithms, 65, 3, 447-464 (2014) · Zbl 1297.65051 · doi:10.1007/s11075-013-9770-3
[56] Luo, W. H.; Huang, T. Z.; Gu, X. M.; Liu, Y., Barycentric rational collocation methods for a class of non-linear parabolic partial differential equations, Applied Mathematics Letters, 68, 13-19 (2017) · Zbl 1361.65082
[57] Floater, M. S.; Hormann, K., Barycentric rational interpolation with no poles and high rates of approximation, Numerische Mathematik, 107, 2, 315-331 (2007) · Zbl 1221.41002 · doi:10.1007/s00211-007-0093-y
[58] Wu, H.; Wang, Y.; Zhang, W., Numerical solution of a class of non-linear partial differential equations by using barycentric interpolation collocation method, Mathematical Problems in Engineering, 2018 (2018) · Zbl 1427.65309 · doi:10.1155/2018/7260346
[59] Shu, C., Differential Quadrature and its Application in Engineering (2000), Berlin, Germany: Springer Science & Business Media, Berlin, Germany · Zbl 0944.65107
[60] Geeta Arora, G.; Joshi, V.; Mittal, R. C., Numerical simulation of nonlinear Schrödinger equation in one and two dimensions, Mathematical Models and Computer Simulations, 11, 4, 634-648 (2019) · doi:10.1134/s2070048219040070
[61] Jain, M. K., Numerical Solution of Differential Equations (1983), New York, NY, USA: Wiley, New York, NY, USA
[62] Asadzadeh, M.; Rostamy, D.; Zabihi, F., Discontinuous Galerkin and multiscale variational schemes for a coupled damped non-linear system of Schrödinger equations, Numerical Methods for Partial Differential Equations, 29, 6, 1912-1945 (2013) · Zbl 1307.65129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.