×

Perturbed Runge-Kutta methods for mixed precision applications. (English) Zbl 1491.65064

Summary: In this work we consider a mixed precision approach to accelerate the implementation of multi-stage methods. We show that Runge-Kutta methods can be designed so that certain costly intermediate computations can be performed as a lower-precision computation without adversely impacting the accuracy of the overall solution. In particular, a properly designed Runge-Kutta method will damp out the errors committed in the initial stages. This is of particular interest when we consider implicit Runge-Kutta methods. In such cases, the implicit computation of the stage values can be considerably faster if the solution can be of lower precision (or, equivalently, have a lower tolerance). We provide a general theoretical additive framework for designing mixed precision Runge-Kutta methods, and use this framework to derive order conditions for such methods. Next, we show how using this approach allows us to leverage low precision computation of the implicit solver while retaining high precision in the overall method. We present the behavior of some mixed-precision implicit Runge-Kutta methods through numerical studies, and demonstrate how the numerical results match with the theoretical framework. This novel mixed-precision implicit Runge-Kutta framework opens the door to the design of many such methods.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L05 Numerical methods for initial value problems involving ordinary differential equations

Software:

Rk-opt; RODAS

References:

[1] Abdelfattah, A., Anzt, H., Boman, E.G., Carson, E., Cojean, T., Dongarra, J., Gates, M., Grutzmacher, T., Higham, N.J., Li, S., Lindquist, N., Liu, Y., Loe, J., Luszczek, P., Nayak, P., Pranesh, S., Rajamanickam, S., Ribizel, T., Smith, B., Swirydowicz, K., Thomas, S., Tomov, S., Tsai, Y.M., Yamazaki, I., Yang, U.M.: “A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic,” (2020) arXiv:2007.06674
[2] Alexander, R., Diagonally implicit Runge-Kutta methods for stiff O.D.E.s, SIAM J. Numer. Anal., 14, 6, 1006-1021 (1977) · Zbl 0374.65038 · doi:10.1137/0714068
[3] Ascher, U.; Ruuth, S.; Wetton, B., Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal., 32, 797-823 (1995) · Zbl 0841.65081 · doi:10.1137/0732037
[4] Burnett, B.; Gottlieb, S.; Grant, ZJ; Heryudono, A., Performance evaluation of mixed-precision Runge-Kutta methods, IEEE High Perform. Extreme Comput. Conf. (HPEC), 2021, 1-6 (2021) · doi:10.1109/HPEC49654.2021.9622803
[5] Kennedy, CA; Carpenter, MH, Additive Runge-Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math., 44, 1-2, 139-181 (2003) · Zbl 1013.65103 · doi:10.1016/S0168-9274(02)00138-1
[6] Field, S. E., Gottlieb, S., Grant, Z. J., Isherwood, L. F., Khanna, G.: A GPU-accelerated mixed-precision WENO method for extremal black hole and gravitational wave physics computations, arxiv.org/abs/2010.04760
[7] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems (1991), Berlin: Springer, Berlin · Zbl 0729.65051
[8] Higham, NJ; Pranesh, S., Simulating low precision floating-point arithmetic, SIAM J. Sci. Comput., 41, 5, C585-C602 (2019) · Zbl 07124603 · doi:10.1137/19M1251308
[9] Higueras, I.; Ketcheson, DI; Kocsis, TA, Optimal monotonicity-preserving perturbations of a given Runge-Kutta method, J. Sci. Comput., 76, 1337-1369 (2018) · Zbl 1397.65103 · doi:10.1007/s10915-018-0664-3
[10] Ketcheson, DI; Parsani, M.; Grant, ZJ; Ahmadia, AJ; Ranocha, H., RK-Opt: A package for the design of numerical ODE solvers, J. Open Source Softw., 5, 54, 2514 (2020) · doi:10.21105/joss.02514
[11] Kouya, T.: Practical Implementation of High-Order Multiple Precision Fully Implicit Runge-Kutta Methods with Step Size Control Using Embedded Formula, arxiv.org/abs/1306.2392 · Zbl 1278.65102
[12] Norsett, SP; Wanner, G., Perturbed collocation and Runge-Kutta methods, Numer. Math., 1981, 38, 193-208 (1981) · Zbl 0471.65045 · doi:10.1007/BF01397089
[13] Sandu, A.; Gunther, M., A generalized-structure approach to additive Runge-Kutta methods, SIAM J. Numer. Anal., 53, 1, 17-42 (2015) · Zbl 1327.65132 · doi:10.1137/130943224
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.