×

Constructions of biangular tight frames and their relationships with equiangular tight frames. (English) Zbl 1398.42021

Kim, Yeonhyang (ed.) et al., Frames and harmonic analysis. AMS special session on frames, wavelets and Gabor systems and special session on frames, harmonic analysis, and operator theory, North Dakota State University, Fargo, ND, USA, April 16–17, 2016. Proceedings. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-3619-3/pbk; 978-1-4704-4723-6/ebook). Contemporary Mathematics 706, 1-19 (2018).
Summary: We study several interesting examples of Biangular Tight Frames (BTFs) - basis-like sets of unit vectors admitting exactly two distinct frame angles (ie, pairwise absolute inner products) – and examine their relationships with Equiangular Tight Frames (ETFs) – basis-like systems which admit exactly one frame angle (of minimal coherence).
We develop a general framework of so-called Steiner BTFs – which includes the well-known Steiner ETFs as special cases; surprisingly, the development of this framework leads to a connection with famously open problems regarding the existence of Mersenne and Fermat primes.
In addition, we demonstrate an example of a smooth parametrization of \(6\)-vector BTFs in \(\mathbb R^3\), where the curve “passes through” an ETF; moreover, the corresponding frame angles “deform” smoothly with the parametrization, thereby answering two questions about the rigidity of BTFs.
Finally, we generalize from BTFs to (chordally) biangular tight fusion frames (BTFFs) – basis-like sets of orthogonal projections admitting exactly two distinct trace inner products – and we explain how one may think of them as generalizations of BTFs. In particular, we construct an interesting example of a BTFF corresponding to \(16\) \(2\)-dimensional subspaces of \(\mathbb R^4\) that “Plücker embeds” into a Steiner ETF consisting of \(16\) vectors in \(\mathbb R^6\), which we refer to as a Plücker ETF.
For the entire collection see [Zbl 1390.42001].

MSC:

42C15 General harmonic expansions, frames

References:

[1] Bachoc, C.; Ehler, M., Tight \(p\)-fusion frames, Appl. Comput. Harmon. Anal., 35, 1, 1-15 (2013) · Zbl 1293.42031 · doi:10.1016/j.acha.2012.07.001
[2] Barg, Alexander; Glazyrin, Alexey; Okoudjou, Kasso A.; Yu, Wei-Hsuan, Finite two-distance tight frames, Linear Algebra Appl., 475, 163-175 (2015) · Zbl 1314.42031 · doi:10.1016/j.laa.2015.02.020
[3] Barg, Alexander; Musin, Oleg R., Bounds on sets with few distances, J. Combin. Theory Ser. A, 118, 4, 1465-1474 (2011) · Zbl 1231.05263 · doi:10.1016/j.jcta.2011.01.002
[4] Barg, Alexander; Yu, Wei-Hsuan, New bounds for spherical two-distance sets, Exp. Math., 22, 2, 187-194 (2013) · Zbl 1267.94141 · doi:10.1080/10586458.2013.767725
[5] J. J. Benedetto and J. D. Kolesar, Geometric properties of Grassmannian frames for \(R^2\) and \(R^3\), EURASIP J. Appl. Signal Process. 2006 (2006), 1-17. · Zbl 1135.94305
[6] Berndt, Bruce C.; Evans, Ronald J.; Williams, Kenneth S., Gauss and Jacobi sums, Canadian Mathematical Society Series of Monographs and Advanced Texts, xii+583 pp. (1998), John Wiley & Sons, Inc., New York · Zbl 0906.11001
[7] Bodmann, Bernhard G.; Haas, John, Achieving the orthoplex bound and constructing weighted complex projective 2-designs with Singer sets, Linear Algebra Appl., 511, 54-71 (2016) · Zbl 1348.42031 · doi:10.1016/j.laa.2016.09.005
[8] B. G. Bodmann and J. I. Haas, Maximal Orthoplectic Fusion Frames from Mutually Unbiased Bases and Block Designs, ArXiv e-prints (2016). · Zbl 1385.42027
[9] Bodmann, Bernhard G.; Paulsen, Vern I.; Tomforde, Mark, Equiangular tight frames from complex Seidel matrices containing cube roots of unity, Linear Algebra Appl., 430, 1, 396-417 (2009) · Zbl 1165.42007 · doi:10.1016/j.laa.2008.08.002
[10] Burton, David M., Elementary number theory, xviii+450 pp. (1989), W. C. Brown Publishers, Dubuque, IA · Zbl 0314.10001
[11] Cahill, Jameson; Casazza, Peter G.; Kutyniok, Gitta, Operators and frames, J. Operator Theory, 70, 1, 145-164 (2013) · Zbl 1289.42088 · doi:10.7900/jot.2011may10.1973
[12] Cahill, Jameson; Strawn, Nate, Algebraic geometry and finite frames. Finite frames, Appl. Numer. Harmon. Anal., 141-170 (2013), Birkh\`“auser/Springer, New York · Zbl 1264.42008 · doi:10.1007/978-0-8176-8373-3\_4
[13] P. G. Casazza, A. Farzannia, J. I. Haas, and T. T. Tran, Toward the Classification of Biangular Harmonic Frames, ArXiv e-prints (2016). · Zbl 1431.42053
[14] Casazza, Peter G.; Fickus, Matthew, Minimizing fusion frame potential, Acta Appl. Math., 107, 1-3, 7-24 (2009) · Zbl 1175.42010 · doi:10.1007/s10440-008-9377-1
[15] Finite frames, Applied and Numerical Harmonic Analysis, xvi+483 pp. (2013), Birkh\`“auser/Springer, New York · Zbl 1257.42001 · doi:10.1007/978-0-8176-8373-3
[16] Catalan, E., Note extraite d’une lettre adress\'ee \`“a l”\'editeur par Mr. E. Catalan, R\'ep\'etiteur \`“a l”\'ecole polytechnique de Paris, J. Reine Angew. Math., 27, 192 pp. (1844) · ERAM 027.0790cj · doi:10.1515/crll.1844.27.192
[17] Handbook of combinatorial designs, Discrete Mathematics and its Applications (Boca Raton), xxii+984 pp. (2007), Chapman & Hall/CRC, Boca Raton, FL · Zbl 1101.05001
[18] Colquitt, W. N.; Welsh, L., Jr., A new Mersenne prime, Math. Comp., 56, 194, 867-870 (1991) · Zbl 0717.11002 · doi:10.2307/2008415
[19] Conway, John H.; Hardin, Ronald H.; Sloane, Neil J. A., Packing lines, planes, etc.: packings in Grassmannian spaces, Experiment. Math., 5, 2, 139-159 (1996) · Zbl 0864.51012
[20] Daubechies, Ingrid; Grossmann, A.; Meyer, Y., Painless nonorthogonal expansions, J. Math. Phys., 27, 5, 1271-1283 (1986) · Zbl 0608.46014 · doi:10.1063/1.527388
[21] P. Delsarte, J. M. Goethals, and J. J. Seidel, Bounds for systems of lines, and Jacobi polynomials, Philips Research Reports 30 (1975), 91. · Zbl 0322.05023
[22] Matthew Fickus and Dustin G. Mixon, Tables of the existence of equiangular tight frames, arXiv e-print, arXiv:1504.00253 (2015). · Zbl 1359.94318
[23] Fickus, Matthew; Mixon, Dustin G.; Tremain, Janet C., Steiner equiangular tight frames, Linear Algebra Appl., 436, 5, 1014-1027 (2012) · Zbl 1252.42032 · doi:10.1016/j.laa.2011.06.027
[24] Goyal, Vivek K.; Vetterli, Martin; Thao, Nguyen T., Quantized overcomplete expansions in \(\mathbf{R}^N\colon\) analysis, synthesis, and algorithms, IEEE Trans. Inform. Theory, 44, 1, 16-31 (1998) · Zbl 0905.94007 · doi:10.1109/18.650985
[25] Griffiths, Phillip; Harris, Joseph, Principles of algebraic geometry, xii+813 pp. (1978), Wiley-Interscience [John Wiley &Sons], New York · Zbl 0836.14001
[26] John I. Haas, The geometry of structured parseval frames and frame potentials, Ph.D. thesis, University of Houston, 2015. · Zbl 1342.42029
[27] Hirschfeld, J. W. P., Finite projective spaces of three dimensions, Oxford Mathematical Monographs, x+316 pp. (1985), The Clarendon Press, Oxford University Press, New York · Zbl 0574.51001
[28] Hoffman, Thomas R.; Solazzo, James P., Complex equiangular tight frames and erasures, Linear Algebra Appl., 437, 2, 549-558 (2012) · Zbl 1246.42028 · doi:10.1016/j.laa.2012.01.024
[29] Hoggar, S. G., \(t\)-designs in projective spaces, European J. Combin., 3, 3, 233-254 (1982) · Zbl 0526.05016 · doi:10.1016/S0195-6698(82)80035-8
[30] Holmes, Roderick B.; Paulsen, Vern I., Optimal frames for erasures, Linear Algebra Appl., 377, 31-51 (2004) · Zbl 1042.46009 · doi:10.1016/j.laa.2003.07.012
[31] Jasper, John; Mixon, Dustin G.; Fickus, Matthew, Kirkman equiangular tight frames and codes, IEEE Trans. Inform. Theory, 60, 1, 170-181 (2014) · Zbl 1364.42036 · doi:10.1109/TIT.2013.2285565
[32] A. Klappenecker and M. Rotteler, Mutually unbiased bases are complex projective 2-designs, International Symposium on Information Theory, 2005. ISIT 2005., Sept 2005, pp. 1740-1744.
[33] Koukouvinos, C.; Whiteman, A. L., Relative difference sets, J. Combin. Theory Ser. A, 74, 1, 153-157 (1996) · Zbl 0856.05014 · doi:10.1006/jcta.1996.0044
[34] Lemmens, P. W. H.; Seidel, J. J., Equi-isoclinic subspaces of Euclidean spaces, Nederl. Akad. Wetensch. Proc. Ser. A {\bf76}=Indag. Math., 35, 98-107 (1973) · Zbl 0272.50008
[35] Ma, S. L., A survey of partial difference sets, Des. Codes Cryptogr., 4, 3, 221-261 (1994) · Zbl 0798.05008 · doi:10.1007/BF01388454
[36] Mih\u ailescu, Preda, Primary cyclotomic units and a proof of Catalan’s conjecture, J. Reine Angew. Math., 572, 167-195 (2004) · Zbl 1067.11017 · doi:10.1515/crll.2004.048
[37] Neumaier, A., Graph representations, two-distance sets, and equiangular lines, Linear Algebra Appl., 114/115, 141-156 (1989) · Zbl 0724.05043 · doi:10.1016/0024-3795(89)90456-4
[38] Pott, Alexander, Finite geometry and character theory, Lecture Notes in Mathematics 1601, viii+181 pp. (1995), Springer-Verlag, Berlin · Zbl 0818.05001 · doi:10.1007/BFb0094449
[39] Roy, Aidan; Scott, A. J., Weighted complex projective 2-designs from bases: optimal state determination by orthogonal measurements, J. Math. Phys., 48, 7, 072110, 24 pp. (2007) · Zbl 1144.81405 · doi:10.1063/1.2748617
[40] Strawn, Nate, Optimization over finite frame varieties and structured dictionary design, Appl. Comput. Harmon. Anal., 32, 3, 413-434 (2012) · Zbl 1246.42030 · doi:10.1016/j.acha.2011.09.001
[41] Strohmer, Thomas; Heath, Robert W., Jr., Grassmannian frames with applications to coding and communication, Appl. Comput. Harmon. Anal., 14, 3, 257-275 (2003) · Zbl 1028.42020 · doi:10.1016/S1063-5203(03)00023-X
[42] Sustik, M\'aty\'as A.; Tropp, Joel A.; Dhillon, Inderjit S.; Heath, Robert W., Jr., On the existence of equiangular tight frames, Linear Algebra Appl., 426, 2-3, 619-635 (2007) · Zbl 1127.15013 · doi:10.1016/j.laa.2007.05.043
[43] F. Szollosi, All complex equiangular tight frames in dimension 3, arXiv preprint, arXiv 1402.6429 (2014).
[44] Vale, Richard; Waldron, Shayne, Tight frames and their symmetries, Constr. Approx., 21, 1, 83-112 (2005) · Zbl 1059.42026 · doi:10.1007/s00365-004-0560-y
[45] L. R. Welch, Lower bounds on the maximum cross correlation of signals, IEEE Trans. on Information Theory 20 (1974), no. 3, 397-9. · Zbl 0298.94006
[46] Wootters, William K.; Fields, Brian D., Optimal state-determination by mutually unbiased measurements, Ann. Physics, 191, 2, 363-381 (1989) · doi:10.1016/0003-4916(89)90322-9
[47] Xia, Pengfei; Zhou, Shengli; Giannakis, Georgios B., Achieving the Welch bound with difference sets, IEEE Trans. Inform. Theory, 51, 5, 1900-1907 (2005) · Zbl 1237.94007 · doi:10.1109/TIT.2005.846411
[48] Zauner, Gerhard, Quantum designs: foundations of a noncommutative design theory, Int. J. Quantum Inf., 9, 1, 445-507 (2011) · Zbl 1214.81062 · doi:10.1142/S0219749911006776
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.