×

Nonlinear dynamics of controlled synchronizations of manipulator system. (English) Zbl 1407.93148

Summary: The nonlinear dynamics of the manipulator system which is controlled to achieve the synchronization motions is investigated in the paper. Firstly, the control strategies and modeling approaches of the manipulator system are given, in which the synchronization goal is defined by both synchronization errors and its derivatives. The synchronization controllers applied on the manipulator system include neuron synchronization controller, improved OPCL synchronization controller, and MRAC-PD synchronization controller. Then, an improved adaptive synchronized control strategy is proposed in order to estimate online the unknown structure parameters and state variables of the manipulator system and to realize the needed synchronous compensation. Furthermore, a robust adaptive synchronization controller is also researched to guarantee the dynamic stability of the system. Finally, the stability of motion synchronizations of the manipulator system possessing nonlinear component is discussed, together with the effect of control parameters and joint friction and others. Some typical motions such as motion bifurcations and the loss of synchronization of it are obtained and illustrated as periodic, multiperiodic, and/or chaotic motion patterns.

MSC:

93C15 Control/observation systems governed by ordinary differential equations
70E60 Robot dynamics and control of rigid bodies
93B52 Feedback control
70Q05 Control of mechanical systems
Full Text: DOI

References:

[1] Pikovsky, A.; Rosenblum, M.; Kurths, J., Synchronization, A Universal Concept in Nonlinear Sciences (2001), Cambridge University Press · Zbl 0993.37002 · doi:10.1017/CBO9780511755743
[2] Blekhman, I. I., Synchronization in Science and Technology (1988), New York, NY, USA: ASME Press, New York, NY, USA
[3] Blekhman, I. I.; Landa, P. S.; Rosenblum, M. G., Synchronization and chaotization in interacting dynamical systems, ASME Applied Mechanical Review, 48, 733-752 (1995) · Zbl 0839.34040 · doi:10.1115/1.3005090
[4] Rosenblum, M.; Pikovsky, A., Synchronization: from pendulum clocks to chaotic lasers and chemical oscillators, Contemporary Physics, 44, 5, 401-416 (2003) · doi:10.1080/00107510310001603129
[5] Lindsey, W., Synchronization Systems in Communication and Control (1972), Upper Saddle River, NJ, USA: Prentice-Hall, Upper Saddle River, NJ, USA
[6] Chen, G.; Dong, X., From Chaos to Order: Methodologies, Perspectives and Applications (1998), Singapore: World Scientific, Singapore · Zbl 0908.93005
[7] Wen, B.; Fan, J.; Zhao, C.; Xiong, W., Vibratory and Controlled Synchronization Engineering (2012), Science Press of China
[8] Blekhman, I. I.; Fradkov, A. L.; Tomchina, O. P.; Bogdanov, D. E., Self-synchronization and controlled synchronization: general definition and example design, Mathematics and Computers in Simulation, 58, 4-6, 367-384 (2002) · Zbl 1102.93320 · doi:10.1016/S0378-4754(01)00378-0
[9] Koren, Y., Cross-coupled biaxial computer control for manufacturing systems, Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 102, 4, 265-272 (1980) · Zbl 0471.93031
[10] Rodriguez-Angeles, A.; Nijmeijer, H., Mutual synchronization of robots via estimated state feedback: a cooperative approach, IEEE Transactions on Control Systems Technology, 12, 4, 542-554 (2004) · doi:10.1109/TCST.2004.825065
[11] Nijmeijer, H., A dynamical control view on synchronization, Physica D, 154, 3-4, 219-228 (2001) · Zbl 0981.34053 · doi:10.1016/S0167-2789(01)00251-2
[12] Nijmeijer, H.; Rodriguez-Angeles, A., Synchronization of Mechanical Systems (2003), World Scientific · Zbl 1092.70001
[13] Brunt, M., Coordination of Redundant Systems (1998), Dordrecht, The Netherlands: Technical University Delft, Dordrecht, The Netherlands
[14] Feng, L.; Koren, Y.; Borenstein, J., Cross-coupling motion controller for mobile robots, IEEE Control Systems Magazine, 13, 6, 35-43 (1993) · doi:10.1109/37.248002
[15] Tomizuka, M.; Hu, J.-S.; Chiu, T.-C.; Kamano, T., Synchronization of two motion control axes under adaptive feedforward control, Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 114, 2, 196-203 (1992) · Zbl 0775.93132
[16] Ren, L.; Mills, J. K.; Sun, D., Adaptive synchronized control for a planar parallel manipulator: theory and experiments, Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 128, 4, 976-979 (2006) · doi:10.1115/1.2363200
[17] Sun, D.; Mills, J. K., Adaptive synchronized control for coordination of multirobot assembly tasks, IEEE Transactions on Robotics and Automation, 18, 4, 498-510 (2002) · doi:10.1109/TRA.2002.802229
[18] Sun, D.; Lu, R.; Mills, J. K.; Wang, C., Synchronous tracking control of parallel manipulators using cross-coupling approach, International Journal of Robotics Research, 25, 11, 1137-1147 (2006) · doi:10.1177/0278364906072037
[19] Sun, D.; Shao, X.; Feng, G., A model-free cross-coupled control for position synchronization of multi-axis motions: theory and experiments, IEEE Transactions on Control Systems Technology, 15, 2, 306-314 (2007) · doi:10.1109/TCST.2006.883201
[20] Walcott, B. L.; Zak, S. H., State observation of nonlinear uncertain dynamical systems, IEEE Transactions on Automatic Control, 32, 2, 166-170 (1987) · Zbl 0618.93019
[21] Bolandi, H.; Ehyaei, A. F., Trajectory planning of two cooperative mobile manipulators under closed-chain and differential constraints, International Journal of Innovative Computing, Information and Control, 8, 2, 1077-1102 (2012)
[22] Salas, F.; Llama, M.; Santibanez, V., A stable self-organizing fuzzy PD control for robot manipulators, International Journal of Innovative Computing, Information and Control, 9, 5, 2065-2086 (2013)
[23] Yang, R.; Shi, P.; Liu, G.-P., Filtering for discrete-time networked nonlinear systems with mixed random delays and packet dropouts, IEEE Transactions on Automatic Control, 56, 11, 2655-2660 (2011) · Zbl 1368.93734 · doi:10.1109/TAC.2011.2166729
[24] Han, Q., Controlled synchronization for masterslave manipulators based on observed ender trajectory, International Journal of Structural Stability and Dynamics, 11, 6, 1089-1102 (2011) · Zbl 1245.93050 · doi:10.1142/S0219455411004488
[25] Han, Q.; Zhao, X.; Li, X.; Wen, B., Bifurcations of a controlled two-bar linkage motion with considering viscous frictions, Shock and Vibration, 18, 1-2, 365-375 (2011) · doi:10.3233/SAV-2010-0571
[26] Han, Q.; Zhao, X.; Yang, X.; Wen, B., Periodic and chaotic motions of a two-bar linkage with OPCL controller, Mathematical Problems in Engineering, 2010 (2010) · Zbl 1205.93067 · doi:10.1155/2010/986319
[27] Han, Q.; Sun, X.; Yang, X.; Wen, B., External synchronization of two dynamical systems with uncertain parameters, Science China Technological Sciences, 53, 3, 731-740 (2010) · Zbl 1202.37129 · doi:10.1007/s11431-010-0070-z
[28] Han, Q.; Sun, X.; Yang, X.; Wen, B., External synchronization of a hysteretic system with a duffing system by feedback control strategy, International Journal of Structural Stability and Dynamics, 9, 3, 461-471 (2009) · Zbl 1271.70062 · doi:10.1142/S0219455409003090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.