×

Some new polynomial discriminant formulas. (English) Zbl 1483.11237

In the article under review, the authors determine the discriminant of any polynomial, in the variable \(x\), of the form \[ x^{n}+a(x^{n-1}+bx^{n-2}+b^{2}x^{n-3}+\cdot \cdot \cdot +b^{n-2}x+b^{n-1}), \] where \(a\), \(b\), and \(n\geq 3\) are integers such that \(a\) is squarefree and \( \gcd (a,b)=1\), or of the form \[ x^{n}+a((bx)^{n-1}+(bx)^{n-2}+(bx)^{n-3}+\cdot \cdot \cdot +bx+1), \] where \(a\neq 0\), \(b\neq 0\), and \(n\geq 3\) are integers such that \((a,b)\neq (1,1)\) when \(n+1\) is composite and \((a,b)\neq (-1,-1)\) when \(n\) is odd. By generalizing the discriminant formulas, obtained by the second author in [Bull. Aust. Math. Soc. 100, No. 2, 239–244 (2019; Zbl 1461.11138); Acta Arith. 197, No. 2, 213–219 (2021; Zbl 1465.11204)], they also compute the discriminant of any irreducible element of the class \[ x^{n}+a(bx^{k}+c)^{m}, \] where \(n\geq 3\), \(m\geq 1\), \(k\geq 1\), \(a\neq 0\), \(b\), and \(c\neq 0\) are integers such that \(k\) is a proper divisor of \(n\) and \(km<n\), or the class \[ x^{n-km}(x^{k}+a)^{m}+b, \] where \(n\geq 3\), \(m\geq 1\), \(k\geq 1\), \(a\), and \(b\neq 0\) are integers such that \(k\) is a proper divisor of \(n\) and \(km<n\).

MSC:

11R04 Algebraic numbers; rings of algebraic integers
11R09 Polynomials (irreducibility, etc.)
12F05 Algebraic field extensions
Full Text: DOI

References:

[1] Boyd, DW; Martin, G.; Thom, M., Squarefree values of trinomial discriminants, LMS J. Comput. Math., 18, 1, 148-169 (2015) · Zbl 1329.11103 · doi:10.1112/S1461157014000436
[2] Dilcher, K.; Stolarsky, KB, Resultants and discriminants of Chebyshev and related polynomials, Trans. Am. Math. Soc., 357, 3, 965-981 (2005) · Zbl 1067.12001 · doi:10.1090/S0002-9947-04-03687-6
[3] Filaseta, M., Rouché’s theorem for polynomials, Am. Math. Mon., 97, 9, 834-835 (1990) · Zbl 0737.30004
[4] Gassert, TA, Discriminants of Chebyshev radical extensions, J. Théor. Nombres Bordx., 26, 3, 607-634 (2014) · Zbl 1360.11117 · doi:10.5802/jtnb.882
[5] Gassert, TA, A note on the monogeneity of power maps, Albanian J. Math., 11, 1, 3-12 (2017) · Zbl 1392.11082
[6] Harrington, J., On the factorization of the trinomials x^n +cx^n−1+d, Int. J. Number Theory, 8, 6, 1513-1518 (2012) · Zbl 1293.12003 · doi:10.1142/S179304211250090X
[7] Harrington, J.; Jones, L., Monogenic binomial compositions, Taiwanese J. Math., 24, 5, 1073-1090 (2020) · Zbl 1467.11099 · doi:10.11650/tjm/200201
[8] Harrington, J.; Jones, L., Monogenic cyclotomic compositions, Kodai Math. J., 44, 1, 11-125 (2021) · Zbl 1477.11181 · doi:10.2996/kmj44107
[9] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd ed., Grad. Texts Math., Vol. 84, Springer, New York, 1990. · Zbl 0712.11001
[10] Jones, L., A brief note on some infinite families of monogenic polynomials, Bull. Aust. Math. Soc., 100, 2, 239-244 (2019) · Zbl 1461.11138 · doi:10.1017/S0004972719000182
[11] Jones, L., Monogenic polynomials with non-squarefree discriminant, Proc. Am. Math. Soc., 148, 4, 1527-1533 (2020) · Zbl 1436.11125 · doi:10.1090/proc/14858
[12] Jones, L., Some new infinite families of monogenic polynomials with non-squarefree discriminant, Acta Arith., 197, 2, 213-219 (2021) · Zbl 1465.11204 · doi:10.4064/aa200211-21-7
[13] Jones, L.; Phillips, T., Infinite families of monogenic trinomials and their Galois groups, Int. J. Math., 29, 5, 1850039 (2018) · Zbl 1423.11181 · doi:10.1142/S0129167X18500398
[14] Kedlaya, K., A construction of polynomials with squarefree discriminants, Proc. Am. Math. Soc., 140, 9, 3025-3033 (2012) · Zbl 1301.11072 · doi:10.1090/S0002-9939-2012-11231-6
[15] Perron, O., Neue Kriterien für die Irreduzibilität algebraischer Gleichungen, J. Reine Angew. Math., 132, 288-307 (1907) · JFM 38.0118.02
[16] Swan, R., Factorization of polynomials over finite fields, Pacific J. Math., 12, 1099-1106 (1962) · Zbl 0113.01701 · doi:10.2140/pjm.1962.12.1099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.