×

Spectral representations of one-homogeneous functionals. (English) Zbl 1444.94007

Aujol, Jean-François (ed.) et al., Scale space and variational methods in computer vision. 5th international conference, SSVM 2015, Lège-Cap Ferret, France, May 31 – June 4, 2015. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 9087, 16-27 (2015).
Summary: This paper discusses a generalization of spectral representations related to convex one-homogeneous regularization functionals, e.g. total variation or \(\ell^1\)-norms. Those functionals serve as a substitute for a Hilbert space structure (and the related norm) in classical linear spectral transforms, e.g. Fourier and wavelet analysis. We discuss three meaningful definitions of spectral representations by scale space and variational methods and prove that (nonlinear) eigenfunctions of the regularization functionals are indeed atoms in the spectral representation. Moreover, we verify further useful properties related to orthogonality of the decomposition and the Parseval identity.
The spectral transform is motivated by total variation and further developed to higher order variants. Moreover, we show that the approach can recover Fourier analysis as a special case using an appropriate \(\ell^1\)-type functional and discuss a coupled sparsity example.
For the entire collection see [Zbl 1362.68008].

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
49N90 Applications of optimal control and differential games

References:

[1] Andreu, F., Ballester, C., Caselles, V., Mazón, J.M.: Minimizing total variation flow. Differential and Integral Equations 14(3), 321-360 (2001) · Zbl 1020.35037
[2] Andreu, F., Caselles, V., Dıaz, J., Mazón, J.: Some qualitative properties for the total variation flow. Journal of Functional Analysis 188(2), 516-547 (2002) · Zbl 1042.35018 · doi:10.1006/jfan.2001.3829
[3] Aujol, J., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition - modeling, algorithms, and parameter selection. Int. J. Comp. Vision 67, 111-136 (2006) · Zbl 1287.94011 · doi:10.1007/s11263-006-4331-z
[4] Bartels, S., Nochetto, R., Abner, J., Salgado, A.: Discrete total variation flows without regularization. arXiv preprint arXiv:1212.1137 (2012) · Zbl 1292.65106
[5] Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373-1396 (2003) · Zbl 1085.68119 · doi:10.1162/089976603321780317
[6] Bellettini, G., Caselles, V., Novaga, M.: The total variation flow in \(R^N\). Journal of Differential Equations 184(2), 475-525 (2002) · Zbl 1036.35099 · doi:10.1006/jdeq.2001.4150
[7] Benning, M., Brune, C., Burger, M., Müller, J.: Higher-order tv methods: enhancement via bregman iteration. J. Sci. Comput. 54, 269-310 (2013) · Zbl 1308.94012 · doi:10.1007/s10915-012-9650-3
[8] Benning, M., Burger, M.: Ground states and singular vectors of convex variational regularization methods. Meth. Appl. Analysis 20(4), 295-334 (2013) · Zbl 1294.49020 · doi:10.4310/MAA.2013.v20.n4.a1
[9] Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sciences 3(3), 492-526 (2010) · Zbl 1195.49025 · doi:10.1137/090769521
[10] Burger, M., Frick, K., Osher, S., Scherzer, O.: Inverse total variation flow. Multiscale Modeling & Simulation 6(2), 366-395 (2007) · Zbl 1147.49026 · doi:10.1137/060660564
[11] Burger, M., Gilboa, G., Osher, S., Xu, J.: Nonlinear inverse scale space methods. Comm. in Math. Sci. 4(1), 179-212 (2006) · Zbl 1106.68117 · doi:10.4310/CMS.2006.v4.n1.a7
[12] Chan, T.F., Osher, S., Shen, J.: The digital TV filter and nonlinear denoising. IEEE Trans. Image Process. 10(2), 231-241 (2001) · Zbl 1039.68778 · doi:10.1109/83.902288
[13] Eckardt, L.: Spektralzerlegung von Bildern mit TV-methoden, bachelor thesis, University of Münster (2014)
[14] Giga, Y., Kohn, R.: Scale-invariant extinction time estimates for some singular diffusion equations. Hokkaido University Preprint Series in Mathematics (963) (2010) · Zbl 1223.35211
[15] Gilboa, G.: A spectral approach to total variation. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds.) SSVM 2013. LNCS, vol. 7893, pp. 36-47. Springer, Heidelberg (2013) · Zbl 1484.94007
[16] Gilboa, G.: A total variation spectral framework for scale and texture analysis. SIAM J. Imaging Sciences 7(4), 1937-1961 (2014) · Zbl 1361.94014 · doi:10.1137/130930704
[17] Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(1), 171-184 (2013) · doi:10.1109/TPAMI.2012.88
[18] Meyer, Y.: Oscillating patterns in image processing and in some nonlinear evolution equations (2001) · Zbl 0987.35003
[19] Müller, J.: Advanced image reconstruction and denoising: Bregmanized (higher order) total variation and application in pet, Ph.D. Thesis, Univ. Münster (2013) · Zbl 1271.94001
[20] Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems 2, 849-856 (2002)
[21] Osher, S., Sole, A., Vese, L.: Image decomposition and restoration using total variation minimization and the \(H^{-1}\) norm. SIAM Multiscale Model. Simul. 1, 349-370 (2003) · Zbl 1051.49026 · doi:10.1137/S1540345902416247
[22] Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259-268 (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[23] Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888-905 (2000) · doi:10.1109/34.868688
[24] Steidl, G., Weickert, J., Brox, T., Mrzek, P., Welk, M.: On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs. SIAM Journal on Numerical Analysis 42(2), 686-713 (2004) · Zbl 1083.94001 · doi:10.1137/S0036142903422429
[25] Xu, J. · doi:10.1109/TIP.2006.888335
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.