×

Acoustic wave propagation in anisotropic media with applications to piezoelectric materials. (English) Zbl 1525.35203

Summary: In this paper, we analyze acoustic wave propagation in anisotropic fluids and solids. By formulating the acoustic system as an evolution equation over a Hilbert space, we obtain global in time solutions when the associated material parameters are bounded and measurable. In particular, we prove well-posedness of a Cauchy problem for wave propagation in piezoelectric crystals. We then provide a stability analysis of these solutions not assuming positive definiteness of the stress-strain tensor or the piezoelectric stress tensor. Finally we prove continuous dependence on initial data, allowing the piezoelectric tensor to depend on space and time, provided solutions belong to an appropriate function space.

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q74 PDEs in connection with mechanics of deformable solids
76Q05 Hydro- and aero-acoustics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
76T10 Liquid-gas two-phase flows, bubbly flows
74F15 Electromagnetic effects in solid mechanics
74E10 Anisotropy in solid mechanics
74B05 Classical linear elasticity
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35L90 Abstract hyperbolic equations
35L53 Initial-boundary value problems for second-order hyperbolic systems
35R35 Free boundary problems for PDEs
Full Text: DOI

References:

[1] Ikeda, T., Piezoelectricity (1990), New York (New York: Oxford University Press, New York (New York
[2] Dineva, P.; Gross, D.; Müller, R., Dynamic fracture of piezoelectric materials, 10 (2014), Heidelberg, Germany: Springer, Heidelberg, Germany
[3] Knops, RJ; Payne, LE., Stability in linear elasticity, Int J Solids Struct, 4, 12, 1233-1242 (1968) · Zbl 0182.58905 · doi:10.1016/0020-7683(68)90007-3
[4] Qi, L., Eigenvalues of a real supersymmetric tensor, J Symb Comput, 40, 6, 1302-1324 (2005) · Zbl 1125.15014 · doi:10.1016/j.jsc.2005.05.007
[5] Wilcox, CH.Spectral and asymptotic analysis of acoustic wave propagation. In: Garnir HG, editor. Boundary value problems for linear evolution partial differential equations. D. Reidel Publishing Company; 1976. p. 385-473. · Zbl 0359.35059
[6] Peng, ZH; Zhang, LS., A review of research progress in air-to-water sound transmission, Chinese Physics B, 25, 12 (2016) · doi:10.1088/1674-1056/25/12/124306
[7] Leis, R., Initial boundary value problems in mathematical physics (1986), Chichester, UK: John Wiley & Sons, Chichester, UK · Zbl 0599.35001
[8] Reed, M, Simon, B.Methods of modern mathematical physics: vol. 2: fourier analysis, self-adjointness. Vol. 20, New York: Academic press; 1975. · Zbl 0308.47002
[9] Pazy, A., Semigroups of linear operators and applications to partial differential equations (1983), New York: Springer-Verlag, New York · Zbl 0516.47023
[10] Wilcox, C., Spectral analysis of the Pekeris operator in the theory of acoustic wave propagation in shallow water, Arch Ration Mech Anal, 60, 3, 259-300 (1976) · Zbl 0359.35058 · doi:10.1007/BF01789259
[11] Brillouin, L., Les tenseurs en mécanique et en élasticité (1938), New York (New York: Masson, New York (New York · JFM 64.1382.01
[12] Levinshtein, M.; Shur, MS; Rumyanstev, S., Handbook series on semiconductor parameters, 1 (1996), Singapore: World Scientific, Singapore
[13] Wilcox, CH., Initial-boundary value problems for linear hyperbolic partial differential equations of the second order, Arch Ration Mech Anal, 10, 1, 361-400 (1962) · Zbl 0168.08201 · doi:10.1007/BF00281202
[14] Wilcox, CH., The domain of dependence inequality for symmetric hyperbolic systems, Bulletin Amer Math Soc, 70, 1, 149-155 (1964) · Zbl 0117.31202 · doi:10.1090/S0002-9904-1964-11056-9
[15] Sokolnikoff, IS., Mathematical theory of elasticity, 83 (1956), New York: McGraw-Hill, New York · Zbl 0070.41104
[16] Botkin, N, Turova, V.Simulation of acoustic wave propagation in anisotropic media using dynamic programming technique. 26th Conference on System Modeling and Optimization (CSMO); Berlin, Heidelberg: Springer; 2013. p. 36-51. · Zbl 1321.76055
[17] Botkin, ND; Hoffmann, KH; Pykhteev, OA, Dispersion relations for acoustic waves in heterogeneous multi-layered structures contacting with fluids, J Franklin Inst, 344, 5, 520-534 (2007) · Zbl 1269.74050 · doi:10.1016/j.jfranklin.2006.02.026
[18] Abo-el nour, N.; Askar, NA., Calculation of bulk acoustic wave propagation velocities in trigonal piezoelectric smart materials, Applied Math & Information Sci, 8, 4, 1625-1632 (2014) · doi:10.12785/amis/080417
[19] Reed, M.; Simon, B., Methods of modern mathematical physics i: functional analysis (1980), San Diego (California: Academic Press, San Diego (California · Zbl 0459.46001
[20] Nagel, R.; Engel, KJ., One-parameter semigroups for linear evolution equations, 194 (2000), New York (New York: Springer, New York (New York · Zbl 0952.47036
[21] Bloom, F., Some stability theorems for an abstract equation in Hilbert space with applications to linear elastodynamics, J Math Anal Appl, 61, 2, 521-536 (1977) · Zbl 0378.35059 · doi:10.1016/0022-247X(77)90135-4
[22] Barles, G., Remarks on a flame propagation model (1985), Valbonne, France: INRIA, Valbonne, France
[23] Crandall, MG; Lions, PL., Viscosity solutions of Hamilton-Jacobi equations, Trans Am Math Soc, 277, 1, 1-42 (1983) · Zbl 0599.35024 · doi:10.1090/S0002-9947-1983-0690039-8
[24] Hopf, E., Generalized solutions of non-linear equations of first order, J Math Mech, 14, 6, 951-973 (1965) · Zbl 0168.35101
[25] Evans, LC., Envelopes and nonconvex Hamilton-Jacobi equations, Calc Var Partial Differ Equ, 50, 1-2, 257-282 (2014) · Zbl 1302.49038 · doi:10.1007/s00526-013-0635-3
[26] Stachura, E., The time dependent Maxwell system with measurable coefficients in Lipschitz domains, J Math Anal Appl, 452, 2, 941-956 (2017) · Zbl 1367.35165 · doi:10.1016/j.jmaa.2017.03.052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.