×

Quantification of model uncertainty on path-space via goal-oriented relative entropy. (English) Zbl 1472.62042

Summary: Quantifying the impact of parametric and model-form uncertainty on the predictions of stochastic models is a key challenge in many applications. Previous work has shown that the relative entropy rate is an effective tool for deriving path-space uncertainty quantification (UQ) bounds on ergodic averages. In this work we identify appropriate information-theoretic objects for a wider range of quantities of interest on path-space, such as hitting times and exponentially discounted observables, and develop the corresponding UQ bounds. In addition, our method yields tighter UQ bounds, even in cases where previous relative-entropy-based methods also apply, e.g., for ergodic averages. We illustrate these results with examples from option pricing, non-reversible diffusion processes, stochastic control, semi-Markov queueing models, and expectations and distributions of hitting times.

MSC:

62F35 Robustness and adaptive procedures (parametric inference)
62B10 Statistical aspects of information-theoretic topics
60G40 Stopping times; optimal stopping problems; gambling theory
60J60 Diffusion processes
60K20 Applications of Markov renewal processes (reliability, queueing networks, etc.)
93E20 Optimal stochastic control
91G20 Derivative securities (option pricing, hedging, etc.)
94A17 Measures of information, entropy

Software:

fminsearch; EMpht

References:

[1] M. Abundo, On the representation of an integrated Gauss-Markov process. Sci. Math. Jpn. 77 (2015) 357-361. [Google Scholar] · Zbl 1336.60154
[2] D. Anderson, An efficient finite difference method for parameter sensitivities of continuous time Markov chains. SIAM J. Numer. Anal. 50 (2012) 2237-2258. [Google Scholar] · Zbl 1264.60050
[3] B.D.O. Anderson and J.B. Moore, Optimal Control: Linear Quadratic Methods. Dover Books on Engineering. Dover Publications (2007). [Google Scholar]
[4] G. Arampatzis and M.A. Katsoulakis, Goal-oriented sensitivity analysis for lattice kinetic Monte Carlo simulations. J. Chem. Phys. 140 (2014) 124108. [Google Scholar] · Zbl 1320.65004
[5] S. Asmussen, O. Nerman and M. Olsson, Fitting phase-type distributions via the EM algorithm. Scand. J. Stat. 23 (1996) 419-441. [Google Scholar] · Zbl 0898.62104
[6] R. Atar, K. Chowdhary and P. Dupuis, Robust bounds on risk-sensitive functionals via Rényi divergence. SIAM/ASA J. Uncertainty Quantif. 3 (2015) 18-33. [Google Scholar] · Zbl 1341.60008
[7] R. Atar, A. Budhiraja, P. Dupuis and R. Wu, Robust bounds and optimization at the large deviations scale for queueing models via Rényi divergence. Preprint (2020). [Google Scholar]
[8] D. Bakry and M. Emery, Hypercontractivité do semi-groups de diffusion. C.R. Acad. Sci. Paris Sér I Math. 299 (1984) 775-778. [Google Scholar] · Zbl 0563.60068
[9] H. Bijl and T.B. Schön, Optimal controller/observer gains of discounted-cost LQG systems. Automatica 101 (2019) 471-474. [Google Scholar] · Zbl 1412.49067
[10] J. Birrell and L. Rey-Bellet, Uncertainty quantification for markov processes via variational principles and functional inequalities. SIAM/ASA J. Uncertainty Quantif. 8 (2020) 539-572. [Google Scholar] · Zbl 1501.47073
[11] M. Bladt and B.F. Nielsen, Matrix-exponential distributions in applied probability. In: Probability Theory and Stochastic Modelling, Springer, New York (2017). [Google Scholar] · Zbl 1375.60002
[12] S. Boucheron, G. Lugosi and P. Massart, Concentration Inequalities. Oxford University Press, Oxford (2013). [Google Scholar] · Zbl 1279.60005
[13] S. Boyd, S.P. Boyd and L. Vandenberghe, Convex optimization. Berichte über verteilte messysteme, no. pt. 1, Cambridge University Press (2004). [Google Scholar] · Zbl 1058.90049
[14] T. Breuer and I. Csiszár, Measuring distribution model risk. Math. Finance 26 (2013) 395-411. [Google Scholar] · Zbl 1348.91290
[15] T. Breuer and I. Csiszár, Systematic stress tests with entropic plausibility constraints. J. Banking Finance 37 (2013) 1552-1559. [Google Scholar]
[16] L. Brown, N. Gans, A. Mandelbaum, A. Sakov, H. Shen, S. Zeltyn and L. Zhao, Statistical analysis of a telephone call center. J. Am. Stat. Assoc. 100 (2005) 36-50. [Google Scholar] · Zbl 1117.62303
[17] K. Chowdhary and P. Dupuis, Distinguishing and integrating aleatoric and epistemic variation in uncertainty quantification. ESAIM: M2AN 47 (2013) 635-662. [Google Scholar] · Zbl 1266.65009
[18] T. Dankel, On the distribution of the integrated square of the Ornstein-Uhlenbeck process. SIAM J. Appl. Math. 51 (1991) 568-574. [Google Scholar] · Zbl 0721.60043
[19] P. Dupuis and R.S. Ellis, A weak convergence approach to the theory of large deviations. Wiley Series in Probability and Statistics, John Wiley & Sons, New York (2011). [Google Scholar] · Zbl 0904.60001
[20] P. Dupuis, M.A. Katsoulakis, Y. Pantazis and P. Plecháč, Path-space information bounds for uncertainty quantification and sensitivity analysis of stochastic dynamics. SIAM/ASA J. Uncertainty Quantif. 4 (2016) 80-111. [Google Scholar] · Zbl 1371.65004
[21] P. Dupuis, M.A. Katsoulakis, Y. Pantazis and L. Rey-Bellet, Sensitivity analysis for rare events based on Rényi divergence. Ann. Appl. Probab. 30 (2020) 1507-1533. [Google Scholar] · Zbl 1464.60024
[22] B. Engelmann and R. Rauhmeier, The Basel II Risk Parameters: Estimation, Validation, Stress Testing - With Applications to Loan Risk Management. Springer, Berlin-Heidelberg (2011). [Google Scholar]
[23] M.J. Faddy, Examples of fitting structured phase-type distributions. Appl. Stochastic Models Data Anal. 10 (1994) 247-255. [Google Scholar] · Zbl 0822.60085
[24] M.I. Freidlin, Functional integration and partial differential equations. In: Vol. 109 of Annals of Mathematics Studies. Princeton University Press (2016). [Google Scholar] · Zbl 0568.60057
[25] V. Girardin and N. Limnios, On the entropy for semi-Markov processes. J. Appl. Probab. 40 (2003) 1060-1068. [Google Scholar] · Zbl 1057.60081
[26] P. Glasserman, Monte Carlo methods in financial engineering. In: Stochastic Modelling and Applied Probability, Springer, New York (2013). [Google Scholar] · Zbl 1038.91045
[27] P. Glasserman and X. Xu, Robust risk measurement and model risk. Quant. Finance 14 (2014) 29-58. [Google Scholar] · Zbl 1294.91076
[28] P.W. Glynn, Likelihood ratio gradient estimation for stochastic systems. Commun. ACM 33 (1990) 75-84. [Google Scholar]
[29] K. Gourgoulias, M.A. Katsoulakis and L. Rey-Bellet, Information metrics for long-time errors in splitting schemes for stochastic dynamics and parallel kinetic Monte Carlo. SIAM J. Sci. Comput. 38 (2016) A3808-A3832. [Google Scholar] · Zbl 1355.65006
[30] K. Gourgoulias, M.A. Katsoulakis, L. Rey-Bellet and J. Wang, How biased is your model? Concentration inequalities, information and model bias. IEEE Trans. Inf. Theory 66 (2020) 3079-3097. [Google Scholar] · Zbl 1448.94102
[31] M. Hairer and A.J. Majda, A simple framework to justify linear response theory. Nonlinearity 23 (2010) 909-922. [Google Scholar] · Zbl 1186.82006
[32] S. Heinz and H. Bessaih, Stochastic equations for complex systems: theoretical and computational topics. In: Mathematical Engineering, Springer International Publishing (2015). [Google Scholar] · Zbl 1319.60003
[33] J. Janssen and R. Manca, Applied semi-Markov Processes. Springer, New York (2006). [Google Scholar] · Zbl 1096.60002
[34] I. Karatzas and S. Shreve, Brownian motion and stochastic calculus. in: Graduate Texts in Mathematics, Springer, New York (2014). [Google Scholar] · Zbl 0638.60065
[35] M.A. Katsoulakis, L. Rey-Bellet and J. Wang, Scalable information inequalities for uncertainty quantification. J. Comput. Phys. 336 (2017) 513-545. [Google Scholar] · Zbl 1375.82043
[36] D. Kim, B.J. Debusschere and H.N. Najm, Spectral methods for parametric sensitivity in stochastic dynamical systems. Biophys. J. 92 (2007) 379-393. [PubMed] [Google Scholar]
[37] H. Kushner and P.G. Dupuis, Numerical methods for stochastic control problems in continuous time. In: Stochastic Modelling and Applied Probability, Springer, New York (2013). [Google Scholar] · Zbl 0968.93005
[38] J.C. Lagarias, J.A. Reeds, M.H. Wright and P.E. Wright, Convergence properties of the nelder-mead simplex method in low dimensions. SIAM J. Optim. 9 (1998) 112-147. [Google Scholar] · Zbl 1005.90056
[39] H. Lam, Robust sensitivity analysis for stochastic systems. Math. Oper. Res. 41 (2016) 1248-1275. [Google Scholar] · Zbl 1361.65008
[40] F. Liese and I. Vajda, On divergences and informations in statistics and information theory. IEEE Trans. Inf. Theory 52 (2006) 4394-4412. [Google Scholar] · Zbl 1287.94025
[41] N. Limnios and G. Oprisan, Semi-Markov processes and reliability. In: Statistics for Industry and Technology, Birkhäuser Boston (2012). [Google Scholar] · Zbl 0990.60004
[42] W.M. McEneaney, A robust control framework for option pricing. Math. Oper. Res. 22 (1997) 202-221. [Google Scholar] · Zbl 0871.90010
[43] J.A. Nelder and R. Mead, A simplex method for function minimization. Comput. J. 7 (1965) 308-313. [Google Scholar] · Zbl 0229.65053
[44] H. Owhadi, C. Scovel, T.J. Sullivan, M. McKerns and M. Ortiz, Optimal uncertainty quantification. SIAM Rev. 55 (2013) 271-345. [Google Scholar] · Zbl 1278.60040
[45] W. Page, Applications of mathematics in economics. MAA notes, Mathematical Association of America (2013). [Google Scholar] · Zbl 1270.91006
[46] Y. Pantazis and M.A. Katsoulakis, A relative entropy rate method for path space sensitivity analysis of stationary complex stochastic dynamics. J. Chem. Phys. 138 (2013) 054115. [Google Scholar]
[47] H.L. Peter and S.T. J, Uncertainty within economic models. In: World Scientific Series In Economic Theory, World Scientific Publishing Company (2014). [Google Scholar]
[48] S. Plyasunov and A.P. Arkin, Efficient stochastic sensitivity analysis of discrete event systems. J. Comput. Phys. 221 (2007) 724-738. [Google Scholar] · Zbl 1107.65301
[49] H. Qian, Open-system nonequilibrium steady state: statistical thermodynamics, fluctuations, and chemical oscillations. J. Phys. Chem. B 110 (2006) 15063-15074. [PubMed] [Google Scholar] · doi:10.1021/jp061858z
[50] L. Rey-Bellet and K. Spiliopoulos, Irreversible Langevin samplers and variance reduction: a large deviations approach. Nonlinearity 28 (2015) 2081-2103. [Google Scholar] · Zbl 1338.60086
[51] P.W. Sheppard, M. Rathinam and M. Khammash, A pathwise derivative approach to the computation of parameter sensitivities in discrete stochastic chemical systems. J. Chem. Phys. 136 (2012) 034115. [Google Scholar]
[52] S.E. Shreve, Stochastic Calculus for Finance II: Continuous-time Models. In: Vol. 11 of Springer Finance Textbooks, Springer, New York (2004). [Google Scholar] · Zbl 1068.91041
[53] L. Wu, A deviation inequality for non-reversible Markov processes. Ann. Inst. Henri Poincare (B) Probab. Statistics 36 (2000) 435-445. [Google Scholar] · Zbl 0972.60003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.