×

Bifurcation of nonlinear Bloch waves from the spectrum in the Gross-Pitaevskii equation. (English) Zbl 1339.37072

Summary: We rigorously analyze the bifurcation of stationary so-called nonlinear Bloch waves (NLBs) from the spectrum in the Gross-Pitaevskii (GP) equation with a periodic potential, in arbitrary space dimensions. These are solutions which can be expressed as finite sums of quasiperiodic functions and which in a formal asymptotic expansion are obtained from solutions of the so-called algebraic coupled mode equations. Here we justify this expansion by proving the existence of NLBs and estimating the error of the formal asymptotics. The analysis is illustrated by numerical bifurcation diagrams, mostly in 2D. In addition, we illustrate some relations of NLBs to other classes of solutions of the GP equation, in particular to so-called out-of-gap solitons and truncated NLBs, and present some numerical experiments concerning the stability of these solutions.

MSC:

37K50 Bifurcation problems for infinite-dimensional Hamiltonian and Lagrangian systems
35B40 Asymptotic behavior of solutions to PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)
37M05 Simulation of dynamical systems
65P30 Numerical bifurcation problems

Software:

pde2path

References:

[1] Aceves, A.B.: Optical gap solitons: past, present, and future; theory and experiments. Chaos 10, 584-589 (2000) · Zbl 0971.78014 · doi:10.1063/1.1287065
[2] Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Pure and Applied Mathematics. Elsevier Science, Amsterdam (2003) · Zbl 1098.46001
[3] Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, London (2001) · Zbl 1024.78514
[4] Alexander, T.J., Ostrovskaya, E.A., Kivshar, YuS: Self-trapped nonlinear matter waves in periodic potentials. Phys. Rev. Lett. 96, 040401-040404 (2006) · doi:10.1103/PhysRevLett.96.040401
[5] Bersch, Chr, Onishchukov, G., Peschel, U.: Optical gap solitons and truncated nonlinear Bloch waves in temporal lattices. Phys. Rev. Lett. 109, 093903 (2012) · doi:10.1103/PhysRevLett.109.093903
[6] Blank, E., Dohnal, T.: Families of surface gap solitons and their stability via the numerical Evans function method. SIAM J. Appl. Dyn. Syst. 10(2), 667-706 (2011) · Zbl 1219.35277 · doi:10.1137/090775324
[7] Boyd, J.P.: Weakly Nonlocal Solitary Waves and Beyond-All-Orders Asymptotics, Volume 442 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht (1998) · Zbl 0905.76001 · doi:10.1007/978-1-4615-5825-5
[8] Busch, K., Schneider, G., Tkeshelashvili, L., Uecker, H.: Justification of the nonlinear Schrödinger equation in spatially periodic media. Z. Angew. Math. Phys. 57, 905-939 (2006) · Zbl 1109.35104 · doi:10.1007/s00033-006-0057-6
[9] Coles, M., Pelinovsky, D.: Loops of energy bands for bloch waves in optical lattices. Stud. Appl. Math. 128(3), 300-336 (2012) · Zbl 1251.35166 · doi:10.1111/j.1467-9590.2011.00536.x
[10] Cristiani, M., Morsch, O., Müller, J.H., Ciampini, D., Arimondo, E.: Experimental properties of Bose-Einstein condensates in one-dimensional optical lattices: Bloch oscillations, Landau-Zener tunneling, and mean-field effects. Phys. Rev. A 65(6), 063612 (2002) · doi:10.1103/PhysRevA.65.063612
[11] Dohnal, T.: Traveling solitary waves in the periodic nonlinear Schrödinger equation with finite band potentials. SIAM J. Appl. Math. 74(2), 306-321 (2014) · Zbl 1301.35149 · doi:10.1137/130933149
[12] Dohnal, T., Pelinovsky, D.E., Schneider, G.: Coupled-mode equations and gap solitons in a two-dimensional nonlinear elliptic problem with a separable periodic potential. J. Nonlinear Sci. 19, 95-131 (2009) · Zbl 1177.35216 · doi:10.1007/s00332-008-9027-9
[13] Dohnal, T., Rademacher, J., Uecker, H., Wetzel, D.: pde2path 2.0: multi-parameter continuation and periodic domains. In: Ecker, H., Steindl, H., Jakubek, S. (eds) ENOC 2014—Proceedings of 8th European Nonlinear Dynamics Conference (2014a)
[14] Dohnal, T., Rademacher, J., Uecker, H., Wetzel, D.: pde2path 2.0 User Manual (2014). http://www.staff.uni-oldenburg.de/hannes.uecker/pde2path · Zbl 1213.35060
[15] Dohnal, T., Uecker, H.: Coupled mode equations and gap solitons for the 2d Gross-Pitaevskii equation with a non-separable periodic potential. Phys. D 238(9-10), 860-879 (2009) · Zbl 1173.37056 · doi:10.1016/j.physd.2009.02.013
[16] Eastham, M.S.P.: Spectral Theory of Periodic Differential Equations. Scottish Academic Press, Edinburgh (1973) · Zbl 0287.34016
[17] Efremidis, N.K., Hudock, J., Christodoulides, D.N., Fleischer, J.W., Cohen, O., Segev, M.: Two-dimensional optical lattice solitons. Phys. Rev. Lett. 91, 213906 (2003) · doi:10.1103/PhysRevLett.91.213906
[18] Fefferman, C.L., Weinstein, M.I.: Honeycomb lattice potentials and Dirac points. J. Am. Math. Soc. 25(4), 1169-1220 (2012) · Zbl 1316.35214 · doi:10.1090/S0894-0347-2012-00745-0
[19] Fibich, Gadi: The Nonlinear Schrödinger Equation, Volume 192 of Applied Mathematical Sciences, vol. 192. Springer, Cham (2015). (Singular solutions and optical collapse) · Zbl 1351.35001 · doi:10.1007/978-3-319-12748-4
[20] Gaizauskas, E., Savickas, A., Staliunas, K.: Radiation from band-gap solitons. Opt. Commun. 285(8), 2166-2170 (2012) · doi:10.1016/j.optcom.2011.12.088
[21] Hörmander, L.: The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators. Springer, Berlin (2007) · Zbl 1115.35005
[22] Hwang, G., Akylas, T.R., Yang, J.: Gap solitons and their linear stability in one-dimensional periodic media. Phys. D Nonlinear Phenom. 240(12), 1055-1068 (2011) · Zbl 1218.35224 · doi:10.1016/j.physd.2011.03.003
[23] Ilan, B., Weinstein, M.I.: Band-edge solitons, nonlinear Schrödinger/Gross-Pitaevskii equations, and effective media. Multiscale Model. Simul. 8(4), 1055-1101 (2010) · Zbl 1213.35060 · doi:10.1137/090769417
[24] Johanson, B., Kirr, K., Kovalev, A., Kroon, L.: Gap and out-gap solitons in modulated systems of finite length: exact solutions in the slowly varying envelope limit. Phys. Scr. 83, 065005 (2011) · Zbl 1219.35314 · doi:10.1088/0031-8949/83/06/065005
[25] Konotop, V.V., Salerno, M.: Modulational instability in Bose-Einstein condensates in optical lattices. Phys. Rev. A 65, 021602(R) (2002) · doi:10.1103/PhysRevA.65.021602
[26] Louis, P.J.Y., Ostrovskaya, E.A., Savage, C.M., Kivshar, YuS: Bose-Einstein condensates in optical lattices: band-gap structure and solitons. Phys. Rev. A 67, 013602-013609 (2003) · doi:10.1103/PhysRevA.67.013602
[27] Maier, R.S.: Lamé polynomials, hyperelliptic reductions and Lamé band structure. Philos. Trans. R. Soc. A 366, 1115-1153 (2008) · Zbl 1153.37425 · doi:10.1098/rsta.2007.2063
[28] Mei, Z.: Numerical Bifurcation Analysis for Reaction-Diffusion Equations, Volume 28 of Springer Series in Computational Mathematics. Springer, Berlin (2000) · Zbl 0952.65105 · doi:10.1007/978-3-662-04177-2
[29] Nirenberg, L.: Topics in Nonlinear Functional Analysis. Courant Institute of Mathematical Sciences, New York (1974) · Zbl 0286.47037
[30] Pelinovsky, D.E.: Localization in Periodic Potentials, Volume 390 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2011) · Zbl 1229.35003 · doi:10.1017/CBO9780511997754
[31] Shi, Z., Wang, J., Chen, Z., Yang, J.: Linear instability of two-dimensional low-amplitude gap solitons near band edges in periodic media. Phys. Rev. A 78, 063812 (2008) · doi:10.1103/PhysRevA.78.063812
[32] Shi, Z., Yang, J.: Solitary waves bifurcated from Bloch-band edges in two-dimensional periodic media. Phys. Rev. E 75, 056602 (2007) · doi:10.1103/PhysRevE.75.056602
[33] Sukhorukov, A.A., Kivshar, Y.S.: Nonlinear guided waves and spatial solitons in a periodic layered medium. J. Opt. Soc. Am. B 19(4), 772-781 (2002) · doi:10.1364/JOSAB.19.000772
[34] Sulem, C., Sulem, P.-L.: The Nonlinear Schrödinger Equation, Volume 139 of Applied Mathematical Sciences. Springer, New York (1999) · Zbl 0928.35157
[35] Sun, S.M., Shen, M.C.: Exponentially small estimate for a generalized solitary wave solution to the perturbed K-dV equation. Nonlinear Anal. 23(4), 545-564 (1994) · Zbl 0811.35132 · doi:10.1016/0362-546X(94)90093-0
[36] Uecker, H., Wetzel, D., Rademacher, J.: pde2path—a Matlab package for continuation and bifurcation in 2D elliptic systems. Numer. Math. Theory Methods Appl. (NMTMA) 7, 58-106 (2014) · Zbl 1313.65311
[37] Wang, J., Yang, J.: Families of vortex solitons in periodic media. Phys. Rev. A 77, 033834 (2008) · doi:10.1103/PhysRevA.77.033834
[38] Wang, J., Yang, J., Alexander, T.J., Kivshar, YuS: Truncated-Bloch-wave solitons in optical lattices. Phys. Rev. A 79, 043610 (2009) · doi:10.1103/PhysRevA.79.043610
[39] Yang, J.: Fully localized two-dimensional embedded solitons. Phys. Rev. A 82, 053828 (2010) · doi:10.1103/PhysRevA.82.053828
[40] Yang, J.: Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, Philadelphia (2010) · Zbl 1234.35006 · doi:10.1137/1.9780898719680
[41] Yulin, A.V., Skryabin, D.V.: Out-of-gap Bose-Einstein solitons in optical lattices. Phys. Rev. A 67(2), 023611 (2003)
[42] Zhang, Y., Liang, W., Wu, B.: Gap solitons and Bloch waves in nonlinear periodic systems. Phys. Rev. A 80, 063815-1 (2009) · doi:10.1103/PhysRevA.80.063815
[43] Zhang, Y., Wu, B.: Composition relation between gap solitons and Bloch waves in nonlinear periodic systems. Phys. Rev. Lett. 102, 093905 (2009) · doi:10.1103/PhysRevLett.102.093905
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.