×

Nonlinear dynamics of modulated waves on graphene like quantum graphs. (English) Zbl 1529.35466

This paper gives the long time dynamics of wave-packet solutions of the cubic Klein-Gordon equation set on infinite 2D periodic graphs. Examples of such 2D graphs are the honeycomb (Graphene) structure and the triangular structure. The graph periodicity is the fast scale of the wave-packet.
Because the linear analysis of the Klein Gordon equation on the honeycomb graph reduces to a 2D band-gap diagram looking very much like Graphen’s (with Dirac points) this work is a counter part on graphs of C. L. Fefferman and M. I. Weinstein’s results in \(\mathbb{R}^2\) (cf. [Commun. Math. Phys. 326, No. 1, 251–286 (2014; Zbl 1292.35195); Journ. Équ. Dériv. Partielles, St.-Jean-de-Monts 2012, Paper No. 12, 12 p. (2012; doi:10.5802/jedp.95)]).
The main differences are:
One can get rid of the angles in the graph thus reducing for instance the honeycomb structure to a rectangular (brick) graph which allows to simplify the nonlinear analysis.
Kirchhoff conditions at graph nodes require a higher order Ansatz in view of the convergence of the reduced model (NLS or Dirac) in \(L^2\)-Sobolev spaces.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q41 Time-dependent Schrödinger equations and Dirac equations
35Q40 PDEs in connection with quantum mechanics
35R02 PDEs on graphs and networks (ramified or polygonal spaces)
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

Citations:

Zbl 1292.35195

References:

[1] R.Adami, E.Serra, and P.Tilli, Threshold phenomena and existence results for NLS ground states on metric graphs, J. Funct. Anal.271 (2016), no. 1, 201-223. · Zbl 1338.35448
[2] G. P.Agrawal, Solitons and nonlinear wave equations, Academic Press, 2001.
[3] J.Arbunich and C.Sparber, Rigorous derivation of nonlinear Dirac equations for wave propagation in honeycomb structures, J. Math. Phys.59 (2018), no. 1, 011509, 18. · Zbl 1380.35142
[4] G.Berkolaiko and P.Kuchment, Introduction to quantum graphs, Amer. Math. Soc., Providence, RI, 2013. · Zbl 1318.81005
[5] K.Busch et al., Justification of the nonlinear Schrödinger equation in spatially periodic media, Z. Angew. Math. Phys.57 (2006), no. 6, 905-939. · Zbl 1109.35104
[6] M.Chirilus‐Bruckner, G.Schneider, and H.Uecker, On the interaction of NLS‐described modulating pulses with different carrier waves, Math. Methods Appl. Sci.30 (2007), no. 15, 1965-1978. · Zbl 1149.35392
[7] M.Chirilus‐Bruckner et al., Separation of internal and interaction dynamics for NLS‐described wave packets with different carrier waves, J. Math. Anal. Appl.347 (2008), no. 1, 304-314. · Zbl 1159.35066
[8] L.Debnath, Nonlinear partial differential equations for scientists and engineers, 2nd edn., Birkhäuser Boston Inc., Boston, MA, 2005. · Zbl 1069.35001
[9] W.Dörfler et al., Photonic crystals. Mathematical analysis and numerical approximation, Springer, 2011. · Zbl 1238.78001
[10] V.Duchêne, J. L.Marzuola, and M. I.Weinstein, Wave operator bounds for one‐dimensional Schrödinger operators with singular potentials and applications, J. Math. Phys.52 (2011), no. 1, 013505, 17. · Zbl 1314.81085
[11] P.Exner, Lattice Kronig-Penney models, Phys. Rev. Lett.74 (1995), no. 18, 3503-3506.
[12] P.Exner and H.Kovařík, Quantum waveguides, Springer, 2015. · Zbl 1314.81001
[13] C. L.Fefferman, J. P.Lee‐Thorp, and M. I.Weinstein, Topologically protected states in one‐dimensional continuous systems and Dirac points, Proc. Natl. Acad. Sci. USA111 (2014), no. 24, 8759-8763. · Zbl 1355.34124
[14] C. L.Fefferman, J. P.Lee‐Thorp, and M. I.Weinstein, Edge states in honeycomb structures, Ann. PDE2 (2016), no. 2, Art. 12, 80. · Zbl 1404.35128
[15] C. L.Fefferman, J. P.Lee‐Thorp, and M. I.Weinstein, Topologically protected states in one‐dimensional systems, Mem. Amer. Math. Soc.247 (2017), no. 1173, vii+118. · Zbl 1379.35076
[16] C. L.Fefferman, J. P.Lee‐Thorp, and M. I.Weinstein, Honeycomb Schrödinger operators in the strong binding regime, Comm. Pure Appl. Math.71 (2018), no. 6, 1178-1270. · Zbl 1414.35061
[17] C. L.Fefferman and M. I.Weinstein, Honeycomb lattice potentials and Dirac points, J. Amer. Math. Soc.25 (2012), no. 4, 1169-1220. · Zbl 1316.35214
[18] C. L.Fefferman and M. I.Weinstein, Waves in honeycomb structures, Journées équations aux dérivées partielles, https://doi.org/10.5802/jedp.95. (French). · doi:10.5802/jedp.95
[19] C. L.Fefferman and M. I.Weinstein, Wave packets in honeycomb structures and two‐dimensional Dirac equations, Comm. Math. Phys.326 (2014), no. 1, 251-286. · Zbl 1292.35195
[20] S.Gilg, D.Pelinovsky, and G.Schneider, Validity of the nls approximation for periodic quantum graphs, NoDEA Nonlinear Differential Equations Appl.23 (2016), no. 6, Art. 63, 30 pp. · Zbl 1367.35156
[21] S.Gnutzmann and U.Smilansky, Quantum graphs: applications to quantum chaos and universal spectral statistics, Adv. Phys.55 (2006), 527-625.
[22] T.Kato, Perturbation theory for linear operators, reprint of the corr. print. of the 2nd ed. 1980 edn., Springer‐Verlag, Berlin, 1995. · Zbl 0836.47009
[23] R. T.Keller et al., Spectral band degeneracies of \(\frac{\pi }{2} \)‐rotationally invariant periodic Schrödinger operators, Multiscale Model. Simul.16 (2018), no. 4, 1684-1731. · Zbl 1412.35283
[24] P.Kirrmann, G.Schneider, and A.Mielke, The validity of modulation equations for extended systems with cubic nonlinearities, Proc. Roy. Soc. Edinburgh, Sect. A122 (1992), no. 1‐2, 85-91. · Zbl 0786.35122
[25] E.Korotyaev and I.Lobanov, Schrödinger operators on zigzag nanotubes, Ann. Henri Poincare8 (2007), 1151-1176. · Zbl 1375.81098
[26] P.Kuchment, An overview of periodic elliptic operators, Bull. Amer. Math. Soc. (N.S.)53 (2016), no. 3, 343-414. · Zbl 1346.35170
[27] P.Kuchment and O.Post, On the spectra of carbon nano‐structures, Comm. Math. Phys.275 (2007), no. 3, 805-826. · Zbl 1145.81032
[28] J. P.Lee‐Thorp, M. I.Weinstein, and Y.Zhu, Elliptic operators with honeycomb symmetry: Dirac points, edge states and applications to photonic graphene, Arch. Ration. Mech. Anal.232 (2019), no. 1, 1-63. · Zbl 1410.78024
[29] F.Linares and G.Ponce, Introduction to nonlinear dispersive equations, Springer, New York, NY, 2015. · Zbl 1310.35002
[30] Y.‐C.Luo, E. O.Jatulan, and C.‐K.Law, Dispersion relations of periodic quantum graphs associated with Archimedean tiling (I), (preprint) (2019).
[31] D.Mugnolo, D.Noja, and C.Seifert, Airy‐type evolution equations on star graphs, Anal. PDE11 (2018), no. 7, 1625-1652. · Zbl 06881629
[32] D.Noja, Nonlinear Schrödinger equation on graphs: recent results and open problems, Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci.372 (2014), no. 2007, 20. · Zbl 1322.35130
[33] A.Pazy, Semigroups of linear operators and applications to partial differential equations, Appl. Math. Sci., vol. 44, Springer‐Verlag, 1983. · Zbl 0516.47023
[34] D. E.Pelinovsky, Localization in periodic potentials. From Schrödinger operators to the Gross-Pitaevskii equation, London Math. Soc. Lecture Note Ser., vol. 390, Cambridge University Press, Cambridge, 2011. · Zbl 1229.35003
[35] D. E.Pelinovsky, Localization in periodic potentials. From Schrödinger operators to the Gross-Pitaevskii equation, Cambridge University Press, Cambridge, 2011. · Zbl 1229.35003
[36] G.Schneider and H.Uecker, Nonlinear PDE - a dynamical systems approach, Grad. Stud. Math., vol. 182, AMS, 2017. · Zbl 1402.35001
[37] Y.Shi and J. E.Hearst, The Kirchhoff elastic rod, the nonlinear Schrödinger equation, and DNA supercoiling, J. Chem. Phys.101 (1994), no. 6, 5186-5200.
[38] H.Uecker et al., Soliton transport in tubular networks: Transmission at vertices in the shrinking limit, Phys. Rev. E91 (2015), 023209.
[39] V.Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, Sov. Phys. J. Appl. Mech. Tech. Phys4 (1968), 190-194.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.