×

Improved uniform error estimates for the two-dimensional nonlinear space fractional Dirac equation with small potentials over long-time dynamics. (English) Zbl 07832807

Summary: We develop improved uniform error bounds on a second-order Strang splitting method for the long-time dynamics of the nonlinear space fractional Dirac equation (NSFDE) in two dimension (2D) with small electromagnetic potentials. First, a Strang splitting approach is implemented to discretize NSFDE in time. Afterwards the Fourier pseudospectral method is used to complete the discretization of NSFDE in space. With the aid of a second-order Strang splitting approach employed to the Dirac equation, the major local truncation error of the indicated numerical methods is established. Moreover, for the semi-discrete scheme and full-discretization, we rigorously demonstrate the improved, sharp uniform error estimates are \(O(\varepsilon \tau^2)\) and \(O(h_1^m +h_2^m +\varepsilon \tau^2)\) in virtue of the regularity compensation oscillation (RCO) technique. In the formulations, \(\tau\) is the time step, \(h_i(i=1,2)\) stands for spatial sizes in \(x_i\)-directions, \(m\) is dependent on the regularity of solutions, and \(\varepsilon \in(0,1]\). In order to verify our error bounds and to illustrate some fascinating long-time dynamical behaviors of the NSFDE with honeycomb lattice potentials for varied \(\varepsilon\), numerical investigations are presented.

MSC:

65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Feng, Y.; Xu, Z.; Yin, J., Uniform error bounds of exponential wave integrator methods for the long-time dynamics of the Dirac equation with small potentials. Appl. Numer. Math., 50-66 (2022) · Zbl 1484.65248
[2] Faustino, N., On fundamental solutions of higher-order space-fractional Dirac equations. Math. Methods Appl. Sci., 1-14 (2021)
[3] Zhang, H.; Jiang, X.; Zeng, F.; Karniadakis, G. E., A stabilized semi-implicit Fourier spectral method for nonlinear space-fractional reaction-diffusion equations. J. Comput. Phys., 109-141 (2020)
[4] Ainsworth, M.; Mao, Z., Analysis and approximation of a fractional Cahn-Hilliard equation. SIAM J. Numer. Anal., 4, 1689-1718 (2017) · Zbl 1369.65124
[5] Hu, D.; Cai, W.; Xu, Z.; Bo, Y.; Wang, Y., Dissipation-preserving Fourier pseudo-spectral method for the space fractional nonlinear sine-Gordon equation with damping. Math. Comput. Simul., 35-59 (2021) · Zbl 1540.65414
[6] Dirac, P. A.M.; Fowler, R. H., The quantum theory of the electron. Proc. R. Soc. Lond. Ser. A, 778, 610-624 (1928) · JFM 54.0973.01
[7] Bagrov, V. G.; Gitman, D., The Dirac Equation and Its Solutions (2014), De Gruyter: De Gruyter Berlin, Boston
[8] Gerritsma, R.; Kirchmair, G.; Zähringer, F.; Solano, E.; Blatt, R.; Roos, C. F., Quantum simulation of the Dirac equation. Nature, 7277, 68-71 (2010)
[9] Brinkman, D.; Heitzinger, C.; Markowich, P., A convergent 2D finite-difference scheme for the Dirac-Poisson system and the simulation of graphene. J. Comput. Phys., 318-332 (2014) · Zbl 1349.65271
[10] Fefferman, C. L.; Weinstein, M. I., Honeycomb lattice potentials and Dirac points. J. Am. Math. Soc., 4, 1169-1220 (2012) · Zbl 1316.35214
[11] Fefferman, C. L.; Weinstein, M. I., Wave packets in honeycomb structures and two-dimensional Dirac equations. Commun. Math. Phys., 1, 251-286 (2014) · Zbl 1292.35195
[12] Ablowitz, M. J.; Zhu, Y., Nonlinear waves in shallow honeycomb lattices. SIAM J. Appl. Math., 1, 240-260 (2012) · Zbl 1258.41012
[13] Bao, W.; Cai, Y.; Jia, X.; Yin, J., Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime. Sci. China Math., 8, 1461-1494 (2016) · Zbl 1365.65208
[14] Alvarez, A.; Kuo, B.; Vasquez, L., The numerical study of a nonlinear one-dimensional Dirac equation. Appl. Math. Comput., 1, 1-15 (1983) · Zbl 0525.65071
[15] Ma, Y.; Yin, J., Error bounds of the finite difference time domain methods for the Dirac equation in the semiclassical regime. J. Sci. Comput., 3, 1801-1822 (2019) · Zbl 1453.65228
[16] Kuydin, V.; Perel, M., Gaussian beams for 2D Dirac equation with electromagnetic field, 111-116
[17] Huang, Z.; Jin, S.; Wu, H.; Yin, D., Gaussian beam methods for the Dirac equation in the semi-classical regime. Commun. Math. Sci., 4, 1301-1315 (2012) · Zbl 1281.65133
[18] Bao, W.; Cai, Y.; Jia, X.; Tang, Q., Numerical methods and comparison for the Dirac equation in the nonrelativistic limit regime. J. Sci. Comput., 3, 1094-1134 (2017) · Zbl 1370.81053
[19] Xu, J.; Shao, S.; Tang, H., Numerical methods for nonlinear Dirac equation. J. Comput. Phys., 131-149 (2013) · Zbl 1349.65351
[20] Li, X.; Chan, C.; Hou, Y., A numerical method with particle conservation for the Maxwell-Dirac system. Appl. Math. Comput., 4, 1096-1108 (2010) · Zbl 1189.81051
[21] Bao, W.; Feng, Y.; Yin, J., Improved uniform error bounds on time-splitting methods for the long-time dynamics of the Dirac equation with small potentials. Multiscale Model. Simul., 3, 1040-1062 (2022) · Zbl 1498.35458
[22] Bao, W.; Cai, Y.; Yin, J., Uniform error bounds of time-splitting methods for the nonlinear Dirac equation in the nonrelativistic regime without magnetic potential. SIAM J. Numer. Anal., 2, 1040-1066 (2021) · Zbl 1462.35318
[23] Bao, W.; Yin, J., A fourth-order compact time-splitting Fourier pseudospectral method for the Dirac equation. Res. Math., 1, 11 (2018) · Zbl 1433.65234
[24] Yin, J., A fourth-order compact time-splitting method for the Dirac equation with time-dependent potentials. J. Comput. Phys. (2021) · Zbl 07506534
[25] Lischke, A.; Pang, G.; Gulian, M.; Song, F.; Glusa, C.; Zheng, X.; Mao, Z.; Cai, W.; Meerschaert, M. M.; Ainsworth, M., What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. (2020) · Zbl 1453.35179
[26] Barrios, B.; Colorado, E.; De Pablo, A.; Sánchez, U., On some critical problems for the fractional Laplacian operator. J. Differ. Equ., 11, 6133-6162 (2012) · Zbl 1245.35034
[27] Wu, G.; Baleanu, D.; Luo, W., Lyapunov functions for Riemann-Liouville-like fractional difference equations. Appl. Math. Comput., 228-236 (2017) · Zbl 1426.39010
[28] Bucur, C.; Valdinoci, E., An introduction to the fractional Laplacian, 7-37
[29] Laskin, N., Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A, 4, 298-305 (2000) · Zbl 0948.81595
[30] Zhang, D.; Zhang, Y.; Zhang, Z.; Ahmed, N.; Zhang, Y.; Li, F.; Belić, M. R.; Xiao, M., Unveiling the link between fractional Schrödinger equation and light propagation in honeycomb lattice. Ann. Phys., 9 (2017)
[31] Zhao, X.; Sun, Z.; Hao, Z., A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation. SIAM J. Sci. Comput., 2865-2886 (2014) · Zbl 1328.65187
[32] Yuan, W.; Zhang, C.; Li, D., Linearized fast time-stepping schemes for time-space fractional Schrödinger equations. Physica D (2023) · Zbl 07736394
[33] Zhang, H.; Jiang, X., Convergence analysis of a fast second-order time-stepping numerical method for two-dimensional nonlinear time-space fractional Schrödinger equation. Numer. Methods Partial Differ. Equ., 657-677 (2023) · Zbl 1531.65132
[34] Wang, W.; Huang, Y.; Tang, J., Lie-Trotter operator splitting spectral method for linear semiclassical fractional Schrödinger equation. Comput. Math. Appl., 117-129 (2022) · Zbl 1504.65227
[35] Zhai, S.; Wang, D.; Weng, Z.; Zhao, X., Error analysis and numerical simulations of Strang splitting method for space fractional nonlinear Schrödinger equation. J. Sci. Comput., 2, 965-989 (2019) · Zbl 1459.65204
[36] Eilinghoff, J.; Schnaubelt, R.; Schratz, K., Fractional error estimates of splitting schemes for the nonlinear Schrödinger equation. J. Math. Anal. Appl., 2, 740-760 (2016) · Zbl 1339.65152
[37] Abdolabadi, F.; Zakeri, A.; Amiraslani, A., A split-step Fourier pseudo-spectral method for solving the space fractional coupled nonlinear Schrödinger equations. Commun. Nonlinear Sci. Numer. Simul. (2023) · Zbl 07676840
[38] Feng, Y., Long time error analysis of the fourth-order compact finite difference methods for the nonlinear Klein-Gordon equation with weak nonlinearity. Numer. Methods Partial Differ. Equ., 1, 897-914 (2021) · Zbl 1534.65133
[39] Bao, W.; Cai, Y.; Feng, Y., Improved uniform error bounds on time-splitting methods for long-time dynamics of the nonlinear Klein-Gordon equation with weak nonlinearity. SIAM J. Numer. Anal., 4, 1962-1984 (2022) · Zbl 07572363
[40] Deng, S.; Li, J., A uniformly accurate exponential wave integrator Fourier pseudo-spectral method with energy-preservation for long-time dynamics of the nonlinear Klein-Gordon equation. Appl. Numer. Math., 166-191 (2022) · Zbl 1503.65258
[41] Gauckler, L., Numerical long-time energy conservation for the nonlinear Schrödinger equation. IMA J. Numer. Anal., 4, 2067-2090 (2017) · Zbl 1433.65236
[42] Bao, W.; Cai, Y.; Feng, Y., Improved uniform error bounds of the time-splitting methods for the long-time (nonlinear) Schrödinger equation. Math. Comput., 341, 1109-1139 (2023) · Zbl 1508.35103
[43] Shen, J.; Tang, T.; Wang, L. L., Spectral Methods: Algorithms, Analyses and Applications (2011), Springer: Springer Berlin · Zbl 1227.65117
[44] Li, J., Energy-preserving exponential integrator Fourier pseudo-spectral schemes for the nonlinear Dirac equation. Appl. Numer. Math., 1-26 (2022) · Zbl 1484.65263
[45] Lubich, C., On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations. Math. Comput., 2141-2153 (2008) · Zbl 1198.65186
[46] Trotter, H. F., On the product of semi-groups of operators. Proc. Am. Math. Soc., 4, 545-551 (1959) · Zbl 0099.10401
[47] Blanes, S.; Moan, P., Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nyström methods. J. Comput. Appl. Math., 2, 313-330 (2002) · Zbl 1001.65078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.