×

On the continuum limit for a model of binary waveguide arrays. (English) Zbl 1512.35501

Author’s abstract: In this paper we prove the convergence of solutions to discrete models for binary waveguide arrays toward those of their formal continuum limit, for which we also show the existence of localized standing waves. This work rigorously justifies formal arguments and numerical simulations present in the Physics literature.

MSC:

35Q41 Time-dependent Schrödinger equations and Dirac equations
35Q40 PDEs in connection with quantum mechanics
35A01 Existence problems for PDEs: global existence, local existence, non-existence
81Q37 Quantum dots, waveguides, ratchets, etc.
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics

References:

[1] Arbunich, J.; Sparber, C., Rigorous derivation of nonlinear Dirac equations for wave propagation in honeycomb structures, J. Math. Phys., 59, 011509, 18 (2018) · Zbl 1380.35142 · doi:10.1063/1.5021754
[2] Bejenaru, I.; Herr, S., The cubic Dirac equation: small initial data in \(H^{1/2}({{\mathbb{R}}}^2)\), Commun. Math. Phys., 343, 2, 515-562 (2016) · Zbl 1339.35261 · doi:10.1007/s00220-015-2508-4
[3] Bihari, I., A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations, Acta Math. Acad. Sci. Hung., 7, 81-94 (1956) · Zbl 0070.08201 · doi:10.1007/BF02022967
[4] Borrelli, W., Symmetric solutions for a 2d critical Dirac equation, Commun. Contemp. Math. (2021) · Zbl 1487.35335 · doi:10.1142/S021919972150019X
[5] Borrelli, W., Stationary solutions for the 2D critical Dirac equation with Kerr nonlinearity, J. Differ. Equ., 263, 7941-7964 (2017) · Zbl 1378.35257 · doi:10.1016/j.jde.2017.08.029
[6] Borrelli, W.; Carlone, R.; Tentarelli, L., On the nonlinear dirac equation on noncompact metric graphs, J. Differ. Equ., 278, 326-357 (2021) · Zbl 1457.35045 · doi:10.1016/j.jde.2021.01.005
[7] Borrelli, W.; Frank, RL, Sharp decay estimates for critical Dirac equations, Trans. Am. Math. Soc., 373, 2045-2070 (2020) · Zbl 1435.35053 · doi:10.1090/tran/7958
[8] Bournaveas, N.; Candy, T., Global well-posedness for the massless cubic Dirac equation, Int. Math. Res. Not. IMRN, 22, 6735-6828 (2016) · Zbl 1404.35380
[9] Esteban, MJ; Séré, E., Stationary states of the nonlinear Dirac equation: a variational approach, Commun. Math. Phys., 171, 323-350 (1995) · Zbl 0843.35114 · doi:10.1007/BF02099273
[10] Fefferman, CL; Weinstein, MI, Honeycomb lattice potentials and dirac points, J. Am. Math. Soc., 25, 1169-1220 (2012) · Zbl 1316.35214 · doi:10.1090/S0894-0347-2012-00745-0
[11] Fefferman, C.L., Weinstein, M.I.: Waves in honeycomb structures. Talk no. 12. doi:10.5802/jedp.95 (2012)
[12] Fefferman, CL; Weinstein, MI, Wave packets in honeycomb structures and two-dimensional Dirac equations, Commun. Math. Phys., 326, 251-286 (2014) · Zbl 1292.35195 · doi:10.1007/s00220-013-1847-2
[13] Goodman, RH; Weinstein, MI; Holmes, PJ, Nonlinear propagation of light in one-dimensional periodic structures, J. Nonlinear Sci., 11, 123-168 (2001) · Zbl 1005.78011 · doi:10.1007/s00332-001-0002-y
[14] Kirkpatrick, K.; Lenzmann, E.; Staffilani, G., On the continuum limit for discrete NLS with long-range lattice interactions, Commun. Math. Phys., 317, 563-591 (2013) · Zbl 1258.35182 · doi:10.1007/s00220-012-1621-x
[15] Ladyzhenskaya, O.A.: The Boundary Value Problems of Mathematical Physics, vol. 49 of Applied Mathematical Sciences. Springer-Verlag, New York (1985). Translated from the Russian by Jack Lohwater [Arthur J. Lohwater] · Zbl 0588.35003
[16] Lions, P-L, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 109-145 (1984) · Zbl 0541.49009 · doi:10.1016/s0294-1449(16)30428-0
[17] Lions, P-L, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 223-283 (1984) · Zbl 0704.49004 · doi:10.1016/s0294-1449(16)30422-x
[18] Longhi, S., Photonic analog of zitterbewegung in binary waveguide arrays, Opt. Lett., 35, 235-237 (2010) · doi:10.1364/OL.35.000235
[19] Lu, J.; Watson, AB; Weinstein, MI, Dirac operators and domain walls, SIAM J. Math. Anal., 52, 1115-1145 (2020) · Zbl 1442.35275 · doi:10.1137/19M127416X
[20] Marini, A.; Longhi, S.; Biancalana, F., Optical simulation of neutrino oscillations in binary waveguide arrays, Phys. Rev. Lett., 113, 150401 (2014) · doi:10.1103/PhysRevLett.113.150401
[21] Pelinovsky, D.: Survey on global existence in the nonlinear Dirac equations in one spatial dimension. In: Harmonic Analysis and Nonlinear Partial Differential Equations, RIMS Kôkyûroku Bessatsu, B26, Res. Inst. Math. Sci. (RIMS), Kyoto, pp. 37-50 (2011) · Zbl 1236.35136
[22] Struwe, M.: Variational methods. vol. 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Springer-Verlag, Berlin, fourth ed., (2008). Applications to nonlinear partial differential equations and Hamiltonian systems · Zbl 1284.49004
[23] Teschl, G., Ordinary Differential Equations and Dynamical Systems, Vol. 140 of Graduate Studies in Mathematics (2012), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1263.34002 · doi:10.1090/gsm/140
[24] Thaller, B., The dirac equation, Texts and Monographs in Physics (1992), Berlin: Springer-Verlag, Berlin · Zbl 0881.47021
[25] Tran, TX; Biancalana, F., Linear and nonlinear photonic jackiw-rebbi states in interfaced binary waveguide arrays, Phys. Rev. A, 96, 013831 (2017) · doi:10.1103/PhysRevA.96.013831
[26] Tran, TX; Longhi, S.; Biancalana, F., Optical analogue of relativistic dirac solitons in binary waveguide arrays, Ann. Phys., 340, 179-187 (2014) · Zbl 1348.81248 · doi:10.1016/j.aop.2013.10.017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.