×

A uniformly accurate exponential wave integrator Fourier pseudo-spectral method with structure-preservation for long-time dynamics of the Dirac equation with small potentials. (English) Zbl 1509.65106

Summary: For the Dirac equation with potentials characterized by a small parameter \(\varepsilon \in (0,1]\), the numerical methods for long-time dynamics have received more and more attention. Recently, two exponential wave integrator Fourier pseudo-spectral (EWIFP) methods for the Dirac equation have been proposed [Y. Feng et al., Appl. Numer. Math. 172, 50–66 (2022; Zbl 1484.65248)] which are uniformly accurate about \(\varepsilon\) and perform well over the classical methods. However, the EWIFP methods cannot preserve the mass and energy, which are important structural features of the Dirac equation from the perspective of geometric numerical integration. In addition, the EWIFP methods are not time symmetric or only are conditionally stable under specific stability condition which implies CFL condition restrictions on the grid ratio. In this work, we propose a structure-preserving EWIFP (SPEWIFP) method. The proposed method is proved to be time symmetric, stable only under the condition \(\tau \lesssim 1\), and preserves the discrete energy and modified mass. Without any CFL condition restrictions on the grid ratio, we carry out a rigourously error analysis and give uniform error bounds of the method at \(O(h^{m_0} + \varepsilon^{1-\beta } \tau^2)\) up to the time at \(O(1/ \epsilon^\beta )\) with \(\beta \in [0,1]\), mesh size \(h\), time step \(\tau \), and an integer \(m_0\) determined by the regularity conditions. In general, the Dirac equation with small potentials can be converted to an oscillatory Dirac equation with wavelength at \(O( \varepsilon^\beta )\) in time which includes the case of simultaneous massless and nonrelativistic regime. It is easy to extend the error bounds and structure-preservation properties to the oscillatory Dirac equation. Numerical experiments support our error bounds and structure-preservation properties.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35Q41 Time-dependent Schrödinger equations and Dirac equations

Citations:

Zbl 1484.65248
Full Text: DOI

References:

[1] Abanin, DA; Morozov, SV; Ponomarenko, LA; Gorbachev, RV; Mayorov, AS; Katsnelson, MI; Watanabe, K.; Taniguchi, T.; Novoselov, KS; Levitov, LS; Geim, AK, Giant nonlocality near the Dirac point in graphene, Science, 332, 328-330 (2011) · doi:10.1126/science.1199595
[2] Ablowitz, MJ; Zhu, Y., Nonlinear waves in shallow honeycomb lattices, SIAM J. Appl. Math., 72, 240-260 (2012) · Zbl 1258.41012 · doi:10.1137/11082662X
[3] Ackad, E.; Horbatsch, M., Numerical solution of the Dirac equation by a mapped Fourier grid method, J. Phys. A: Math. General, 38, 3157-3171 (2005) · Zbl 1065.81036 · doi:10.1088/0305-4470/38/14/007
[4] Adams, RA; Fournier, JJ, Sobolev Spaces (2003), New York: Elsevier, New York · Zbl 1098.46001
[5] Anderson, CD, The positive electron, Phys. Rev., 43, 491-498 (1933) · doi:10.1103/PhysRev.43.491
[6] Bao, W.; Yin, J., A fourth-order compact time-splitting Fourier pseudospectral method for the Dirac equation, Res. Math. Sci., 6, 11 (2019) · Zbl 1433.65234 · doi:10.1007/s40687-018-0173-x
[7] Bao, W.; Cai, Y.; Jia, X.; Yin, J., Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime, Sci. China Math., 59, 1461-1494 (2016) · Zbl 1365.65208 · doi:10.1007/s11425-016-0272-y
[8] Bao, W.; Cai, Y.; Jia, X.; Tang, Q., A uniformly accurate multiscale time integrator pseudospectral method for the Dirac equation in the nonrelativistic limit regime, SIAM J. Numer. Anal., 54, 1785-1812 (2016) · Zbl 1346.35171 · doi:10.1137/15M1032375
[9] Bao, W.; Cai, Y.; Jia, X.; Tang, Q., Numerical methods and comparison for the Dirac equation in the nonrelativistic limit regime, J. Sci. Comput., 71, 1094-1134 (2017) · Zbl 1370.81053 · doi:10.1007/s10915-016-0333-3
[10] Bao, W.; Cai, Y.; Yin, J., Super-resolution of time-splitting methods for the Dirac equation in the nonrelativistic regime, Math. Comp., 89, 2141-2173 (2020) · Zbl 1440.35286 · doi:10.1090/mcom/3536
[11] Bao, W.; Feng, Y.; Su, C., Uniform error bounds of time-splitting spectral methods for the long-time dynamics of the nonlinear Klein-Gordon equation with weak nonlinearity, Math. Comput., 91, 811-842 (2022) · Zbl 07473345 · doi:10.1090/mcom/3694
[12] Bao, W., Feng, Y., Yin, J.: Improved uniform error bounds on time-splitting methods for the long-time dynamics of the Dirac equation with small potentials. arXiv:2112.03616
[13] Bao, W., Cai, Y., Feng, Y.: Improved uniform error bounds on time-splitting methods for the long-time dynamics of the weakly nonlinear Dirac equation. arXiv:2203.05886v2 · Zbl 07572363
[14] Bechouche, P.; Mauser, N.; Poupaud, F., (Semi)-nonrelativistic limits of the Dirac equation with external time-dependent electromagnetic field, Commun. Math. Phys., 197, 405-425 (1998) · Zbl 0926.35124 · doi:10.1007/s002200050457
[15] Braun, JW; Su, Q.; Grobe, R., Numerical approach to solve the time-dependent Dirac equation, Phys. Rev. A, 59, 604-612 (1999) · doi:10.1103/PhysRevA.59.604
[16] Brinkman, D.; Heitzinger, C.; Markowich, PA, A convergent 2D finite-difference scheme for the Dirac-Poisson system and the simulation of graphene, J. Comput. Phys., 257, 318-332 (2014) · Zbl 1349.65271 · doi:10.1016/j.jcp.2013.09.052
[17] Carles, R.; Markowich, PA; Sparber, C., Semiclassical asymptotics for weakly nonlinear Bloch waves, J. Stat. Phys., 117, 343-375 (2004) · Zbl 1104.81049 · doi:10.1023/B:JOSS.0000044070.34410.17
[18] Chartier, P.; M’ehats, F.; Thalhammer, M.; Zhang, Y., Improved error estimates for splitting methods applied to highly-oscillatory nonlinear Schrödinger equations, Math. Comp., 85, 2863-2885 (2016) · Zbl 1344.35131 · doi:10.1090/mcom/3088
[19] Cirincione, RJ; Chernoff, PR, Dirac and Klein-Gordon equations: convergence of solutions in the nonrelativistic limit, Commun. Math. Phys., 79, 33-46 (1981) · Zbl 0471.35024 · doi:10.1007/BF01208284
[20] Das, A., General solutions of Maxwell-Dirac equations in 1 + 1-dimensional space-time and spatially confined solution, J. Math. Phys., 34, 3986-3999 (1993) · Zbl 0780.35107 · doi:10.1063/1.530019
[21] Das, A.; Kay, D., A class of exact plane wave solutions of the Maxwell-Dirac equations, J. Math. Phys., 30, 2280-2284 (1989) · Zbl 0701.58059 · doi:10.1063/1.528555
[22] Esteban, M.; Séré, E., Existence and multiplicity of solutions for linear and nonlinear Dirac problems, Partial Differ Equ. 22 Appl., 12, 107-112 (1997) · Zbl 0889.35084
[23] Fefferman, CL; Weinstein, MI, Honeycomb lattice potentials and Dirac points, J. Am. Math. Soc., 25, 1169-1220 (2012) · Zbl 1316.35214 · doi:10.1090/S0894-0347-2012-00745-0
[24] Fefferman, CL; Weinstein, MI, Wave packets in honeycomb structures and two-dimensional Dirac equations, Commun. Math. Phys., 326, 251-286 (2014) · Zbl 1292.35195 · doi:10.1007/s00220-013-1847-2
[25] Feng, Y., Yin, J.: Spatial resolution of different discretizations over long-time for the Dirac equation with small potentials. preprint arXiv:2105.10468 (2021) · Zbl 1524.81041
[26] Feng, Y.; Xu, ZG; Yin, J., Uniform error bounds of exponential wave integrator methods for the long-time dynamics of the Dirac equation with small potentials, Appl. Numer. Math., 172, 50-66 (2022) · Zbl 1484.65248 · doi:10.1016/j.apnum.2021.09.018
[27] Fillion-Gourdeau, F.; Lorin, E.; Bandrauk, AD, Numerical solution of the time-dependent Dirac equation in coordinate space without fermion-doubling, Comput. Phys. Commun., 183, 1403-1415 (2012) · Zbl 1295.35363 · doi:10.1016/j.cpc.2012.02.012
[28] Fillion-Gourdeau, F.; Lorin, E.; Bandrauk, AD, Resonantly enhanced pair production in a simple diatomic model, Phys. Rev. Lett., 110, 013002 (2013) · doi:10.1103/PhysRevLett.110.013002
[29] Fillion-Gourdeau, F.; Lorin, E.; Bandrauk, AD, A split-step numerical method for the time-dependent Dirac equation in 3-D axisymmetric geometry, J. Comput. Phys., 272, 559-587 (2014) · Zbl 1349.65292 · doi:10.1016/j.jcp.2014.03.068
[30] Gesztesy, F.; Grosse, H.; Thaller, B., A rigorous approach to relativistic corrections of bound state energies for spin-1/2 particles, Ann. Inst. Henri Poincaricles. Ann. Inst. Henri Poiné Phys. Theor., 40, 159-174 (1984) · Zbl 0534.46053
[31] Gross, L., The Cauchy problem for the coupled Maxwell and Dirac equations, Commun. Pure Appl. Math., 19, 1-15 (1966) · Zbl 0137.32401 · doi:10.1002/cpa.3160190102
[32] Gosse, L., A well-balanced and asymptotic-preserving scheme for the one-dimensional linear Dirac equation, BIT Numer. Math., 55, 433-458 (2015) · Zbl 1321.35183 · doi:10.1007/s10543-014-0510-4
[33] Guo, B-Y; Shen, J.; Xu, C-L, Spectral and pseudospectral approximations using Hermite functions: application to the Dirac equation, Adv. Comput. Math., 19, 35-55 (2003) · Zbl 1032.33004 · doi:10.1023/A:1022892132249
[34] Hairer, E.; Lubich, C.; Wanner, G., Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn (2006), Berlin: Springer, Berlin · Zbl 1094.65125
[35] Hochbruck, M.; Ostermann, A., Exponential integrators, Acta Numer., 19, 209-286 (2000) · Zbl 1242.65109 · doi:10.1017/S0962492910000048
[36] Jin, S.; Wu, H.; Yang, X., A numerical study of the Gaussian beam methods for one-dimensional Schrodinger-Poisson equations, J. Comput. Math., 28, 261-272 (2010) · Zbl 1224.81005 · doi:10.4208/jcm.2009.10-m1005
[37] Li, J., Energy-preserving exponential integrator Fourier pseudo-spectral schemes for the nonlinear Dirac equation, Appl. Numer. Math., 172, 1-26 (2022) · Zbl 1484.65263 · doi:10.1016/j.apnum.2021.09.006
[38] Li, J., Error analysis of a time fourth-order exponential wave integrator Fourier pseudo-spectral method for the nonlinear Dirac equation, Int. J. Comput. Math., 99, 791-807 (2022) · Zbl 1499.65566 · doi:10.1080/00207160.2021.1934459
[39] Li, J.; Gao, Y., Energy-preserving trigonometrically-fitted continuous stage Runge-Kutta-Nyström methods for oscillatory Hamiltonian systems, Numer. Algorithms, 81, 1379-1401 (2019) · Zbl 1416.65514 · doi:10.1007/s11075-019-00655-4
[40] Li, J.; Wang, T., Optimal point-wise error estimate of two conservative fourth-order compact finite difference schemes for the nonlinear Dirac equation, Appl. Numer. Math., 162, 150-170 (2021) · Zbl 1457.81035 · doi:10.1016/j.apnum.2020.12.010
[41] Li, J.; Wu, X., Energy-preserving continuous stage extended Runge-Kutta-Nyström methods for oscillatory Hamiltonian systems, Appl. Numer. Math., 145, 469-487 (2019) · Zbl 1448.65266 · doi:10.1016/j.apnum.2019.05.009
[42] Deng, S., Li, J.: A uniformly accurate exponential wave integrator Fourier pseudo-spectral method with energy-preservation for long-time dynamics of the nonlinear Klein-Gordon equation. Appl. Numer. Math. doi:10.1016/j.apnum.2022.03.019 · Zbl 1503.65258
[43] Ma, Y.; Yin, J., Error bounds of the finite difference time domain methods for the Dirac equation in the semiclassical regime, J. Sci. Comput., 81, 1801-1822 (2019) · Zbl 1453.65228 · doi:10.1007/s10915-019-01063-5
[44] Ma, Y.; Yin, J., Error estimates of finite difference methods for the Dirac equation in the massless and nonrelativistic regime, Numer. Algorithms, 89, 1415-1440 (2022) · Zbl 07496452 · doi:10.1007/s11075-021-01159-w
[45] Miyatake, Y.; Butcher, JC, Characterization of energy-preserving methods and the construction of parallel integrators for Hamiltonian systems, SIAM J. Numer. Anal., 54, 1993-2013 (2016) · Zbl 1342.65232 · doi:10.1137/15M1020861
[46] Neto, AHC; Guinea, F.; Peres, NMR; Novoselov, KS; Geim, AK, The electronic properties of graphene, Rev. Mod. Phys., 81, 109-162 (2009) · doi:10.1103/RevModPhys.81.109
[47] Novoselov, KS; Geim, AK; Morozov, SV; Jiang, D.; Zhang, Y.; Dubonos, SV; Grigorieva, IV; Firsov, AA, Electric field effect in atomically thin carbon films, Science, 306, 666-669 (2004) · doi:10.1126/science.1102896
[48] Shen, J.; Tang, T., Spectral and High-Order Methods with Applications (2006), Beijing: Science Press, Beijing · Zbl 1234.65005
[49] Shen, J.; Tang, T.; Wang, L., Spectral Methods: Algorithms, Analysis and Applications (2011), Berlin: Springer, Berlin · Zbl 1227.65117 · doi:10.1007/978-3-540-71041-7
[50] Smith, GD, Numerical Solution of Partial Differential Equations (1965), London: Oxford University Press, London · Zbl 0123.11806
[51] Sparber, C.; Markowich, PA, Semiclassical asymptotics for the Maxwell-Dirac system, J. Math. Phys., 44, 4555-4572 (2003) · Zbl 1062.81059 · doi:10.1063/1.1604455
[52] Spohn, H., Semiclassical limit of the Dirac equation and spin precession, Ann. Phys., 282, 420-431 (2000) · Zbl 1112.81320 · doi:10.1006/aphy.2000.6039
[53] Wu, H.; Huang, Z.; Jin, S.; Yin, D., Gaussian beam methods for the Dirac equation in the semi-classical regime, Commun. Math. Sci., 10, 1301-1315 (2012) · Zbl 1281.65133 · doi:10.4310/CMS.2012.v10.n4.a14
[54] Xu, J.; Shao, S.; Tang, H., Numerical methods for nonlinear Dirac equation, J. Comput. Phys., 245, 131-149 (2013) · Zbl 1349.65351 · doi:10.1016/j.jcp.2013.03.031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.