×

Unified approach to Floquet lattices, topological insulators, and their nonlinear dynamics. (English) Zbl 07726697

Summary: A unified method for analyzing the dynamics and topological structure associated with a class of Floquet topological insulators is presented. The method is applied to a system that describes the propagation of electromagnetic waves through the bulk of a two-dimensional lattice that is helically driven in the direction of propagation. Tight-binding approximations are employed to derive reduced dynamical systems. Further asymptotic approximations, valid in the high-frequency driving regime, yield a time-averaged system which governs the leading order behavior of the wave. From this follows an analytic calculation of the Berry connection, curvature, and Chern number via analyzing the local behavior of the eigenfunctions near the critical points of the spectrum. Examples include honeycomb, Lieb, kagome, and 1/5-depleted lattices. In the nonlinear regime, novel equations governing slowly varying wave envelopes are derived. For the honeycomb lattice, numerical simulations show that for relatively small nonlinear effects a striking spiral pattern occurs; as nonlinearity increases, localized structures emerge, and for somewhat higher nonlinearity the waves appear to collapse.

MSC:

68Q25 Analysis of algorithms and problem complexity
68R10 Graph theory (including graph drawing) in computer science
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)

References:

[1] Ablowitz, M. J., Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons, , Cambridge University Press, 2011, doi:10.1017/CBO9780511998324. · Zbl 1232.35002
[2] Ablowitz, M. J. and Cole, J. T., Tight-binding methods for general longitudinally driven photonic lattices: Edge states and solitons, Phys. Rev. A, 96 (2017), 043868, doi:10.1103/PhysRevA.96.043868.
[3] Ablowitz, M. J. and Cole, J. T., Topological insulators in longitudinally driven waveguides: Lieb and kagome lattices, Phys. Rev. A, 99 (2019), 033821, doi:10.1103/PhysRevA.99.033821.
[4] Ablowitz, M. J. and Cole, J. T., Discrete approximation of topologically protected modes in magneto-optical media, Phys. Rev. A, 101 (2020), 023811, doi:10.1103/PhysRevA.101.023811.
[5] Ablowitz, M. J., Curtis, C. W., and Ma, Y.-P., Linear and nonlinear traveling edge waves in optical honeycomb lattices, Phys. Rev. A, 90 (2014), 023813, doi:10.1103/PhysRevA.90.023813.
[6] Ablowitz, M. J., Curtis, C. W., and Ma, Y.-P., Adiabatic dynamics of edge waves in photonic graphene, 2D Mater, 2 (2015), 024003.
[7] Ablowitz, M. J., Nixon, S. D., and Zhu, Y., Conical diffraction in honeycomb lattices, Phys. Rev. A, 79 (2009), 053830, doi:10.1103/PhysRevA.79.053830.
[8] Ablowitz, M. J. and Zhu, Y., Evolution of Bloch-mode envelopes in two-dimensional generalized honeycomb lattices, Phys. Rev. A, 82 (2010), 013840, doi:10.1103/PhysRevA.82.013840.
[9] Allen, M. J., Tung, V. C., and Kaner, R. B., Honeycomb carbon: A review of graphene, Chem. Rev., 110 (2010), pp. 132-145.
[10] Avron, J. E., Seiler, R., and Simon, B., Homotopy and quantization in condensed matter physics, Phys. Rev. Lett., 51 (1983), pp. 51-53, doi:10.1103/PhysRevLett.51.51.
[11] Bal, G. and Massatt, D., Multiscale invariants of Floquet topological insulators, Multiscale Model. Simul., 20 (2022), pp. 493-523, doi:10.1137/21M1392826. · Zbl 1487.35337
[12] Berry, M. V., Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. London A. Math. Phys. Sci., 392 (1984), pp. 45-57, doi:10.1098/rspa.1984.0023. · Zbl 1113.81306
[13] Chern, S. S., Chen, W. H., and Lam, K. S., Lectures on Differential Geometry, World Scientific, 1999, doi:10.1142/3812. · Zbl 0940.53001
[14] Fefferman, C. L. and Weinstein, M. I., Honeycomb lattice potentials and Dirac points, J. Amer. Math. Soc., 25 (2012), pp. 1169-1220. · Zbl 1316.35214
[15] Fukui, T., Hatsugai, Y., and Suzuki, H., Chern numbers in discretized brillouin zone: Efficient method of computing (spin) hall conductances, J. Phys. Soc. Jpn., 74 (2005), pp. 1674-1677, doi:10.1143/JPSJ.74.1674.
[16] Fukui, T., Hatsugai, Y., and Suzuki, H., Chern numbers in discretized Brillouin zone: Efficient method of computing (spin) hall conductances, J. Phys. Soc. Jpn., 74 (2005), pp. 1674-1677, doi:10.1143/JPSJ.74.1674.
[17] Graf, G. M. and Tauber, C., Bulk-edge correspondence for two-dimensional floquet topological insulators, Ann. H. Poincaré, 19 (2018), pp. 709-741, doi:10.1007/s00023-018-0657-7. · Zbl 1392.82008
[18] Guo, H.-M. and Franz, M., Topological insulator on the kagome lattice, Phys. Rev. B, 80 (2009), 113102, doi:10.1103/PhysRevB.80.113102.
[19] Haldane, F. D. M., Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly,”Phys. Rev. Lett., 61 (1988), pp. 2015-2018, doi:10.1103/PhysRevLett.61.2015.
[20] Haldane, F. D. M. and Raghu, S., Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry, Phys. Rev. Lett., 100 (2008), 013904, doi:10.1103/PhysRevLett.100.013904.
[21] Hu, P., Xie, P., and Zhu, Y., Traveling Edge States in Massive Dirac Equations along Slowly Varying Edges, preprint, https://arxiv.org/abs/2202.13653, 2022.
[22] Klitzing, K. V., Dorda, G., and Pepper, M., New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett., 45 (1980), pp. 494-497, doi:10.1103/PhysRevLett.45.494.
[23] Kohmoto, M., Topological invariant and the quantization of the Hall conductance, Ann. Phys., 160 (1985), pp. 343-354, doi:10.1016/0003-4916(85)90148-4.
[24] Lieb, E. H., Two theorems on the Hubbard model, Phys. Rev. Lett., 62 (1989), pp. 1201-1204, doi:10.1103/PhysRevLett.62.1201.
[25] Liu, X., Lunić, F., Song, D., Dai, Z., Xia, S., Tang, L., Xu, J., Chen, Z., and Buljan, H., Wavepacket self-rotation and helical zitterbewegung in symmetry-broken honeycomb lattices, Laser Photonics Rev., 15 (2021), 2000563, doi:10.1002/lpor.202000563.
[26] Lu, L., Joannopoulos, J. D., and Soljačić, M., Topological photonics, Nat. Photonics, 8 (2014), pp. 821-829, doi:10.1038/nphoton.2014.248.
[27] Manuel, L. O., Micheletti, M. I., Trumper, A. E., and Ceccatto, H. A., Heisenberg model on the \(\frac{1}{5} \) -depleted square lattice and the \({\text{cav}}_4{\text{o}}_9\) compound, Phys. Rev. B, 58 (1998), pp. 8490-8494, doi:10.1103/PhysRevB.58.8490.
[28] Marcelli, G., Monaco, D., Moscolari, M., and Panati, G., The Haldane model and its localization dichotomy, Rend. Mat. Appl., 39 (2018), pp. 307-327. · Zbl 1414.81122
[29] Ozawa, T., Price, H. M., Amo, A., Goldman, N., Hafezi, M., Lu, L., Rechtsman, M. C., Schuster, D., Simon, J., Zilberberg, O., and Carusotto, I., Topological photonics, Rev. Mod. Phys., 91 (2019), 015006, doi:10.1103/RevModPhys.91.015006.
[30] Perez-Piskunow, P. M., Torres, L. E. F. Foa, and Usaj, G., Hierarchy of Floquet gaps and edge states for driven honeycomb lattices, Phys. Rev. A, 91 (2015), 043625, doi:10.1103/PhysRevA.91.043625.
[31] Rechtsman, M. C., Zeuner, J. M., Plotnik, Y., Lumer, Y., Podolsky, D., Dreisow, F., Nolte, S., Segev, M., and Szameit, A., Photonic Floquet topological insulators, Nature, 496 (2013), pp. 196-200, doi:10.1038/nature12066.
[32] Rudner, M. S., Lindner, N. H., Berg, E., and Levin, M., Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems, Phys. Rev. X, 3 (2013), 031005, doi:10.1103/PhysRevX.3.031005.
[33] Sagiv, A. and Weinstein, M. I., Effective gaps in continuous Floquet Hamiltonians, SIAM J. Math. Anal., 54 (2022), pp. 986-1021, doi:10.1137/21M1417363. · Zbl 1486.35357
[34] Schell, A. J. and Bloembergen, N., Laser studies of internal conical diffraction. II. Intensity patterns in an optically active crystal, \( \alpha \) -iodic acid, J. Opt. Soc. Am., 68 (1978), pp. 1098-1106.
[35] Simon, B., Holonomy, the quantum adiabatic theorem, and Berry’s phase, Phys. Rev. Lett., 51 (1983), pp. 2167-2170, doi:10.1103/PhysRevLett.51.2167.
[36] Szameit, A. and Nolte, S., Discrete optics in femtosecond-laser-written photonic structures, J. Phys. B: At. Mol. Opt. Phys., 43 (2010), 163001, doi:10.1088/0953-4075/43/16/163001.
[37] Thouless, D. J., Kohmoto, M., Nightingale, M. P., and den Nijs, M., Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett., 49 (1982), pp. 405-408, doi:10.1103/PhysRevLett.49.405.
[38] Tsui, D. C., Stormer, H. L., and Gossard, A. C., Two-dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett., 48 (1982), pp. 1559-1562, doi:10.1103/PhysRevLett.48.1559.
[39] Wang, Z., Chong, Y. D., Joannopoulos, J. D., and Soljačić, M., Reflection-free one-way edge modes in a gyromagnetic photonic crystal, Phys. Rev. Lett., 100 (2008), 013905, doi:10.1103/PhysRevLett.100.013905.
[40] Wang, Z., Chong, Y. D., Joannopoulos, J. D., and Soljačić, M., Observation of unidirectional backscattering-immune topological electromagnetic states, Nature, 461 (2009), pp. 772-775, doi:10.1038/nature08293.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.