×

A variational formulation for Dirac operators in bounded domains. Applications to spectral geometric inequalities. (English) Zbl 1472.81090

let \(\Omega \subset {\mathbb R}^2\) be a \(C^\infty\) simply connected domain and let \(n = (n_1,n_2)^\top\) be the outward pointing normal field on \(\partial\Omega\). The Dirac operator with infinite mass boundary conditions in \(L^2(\Omega,{\mathbb C}^2)\) is defined as \[D^\Omega := \begin{pmatrix} 0 & -2\mathrm{i}\partial_z\\ -2\mathrm{i}\partial_{\bar z} & 0 \end{pmatrix}, \] with domain \(\{ u = (u_1,u_2)^\top \in H^1(\Omega,{\mathbb C}^2) : u_2 = \mathrm{i} \mathbf{n}u_1 \text{ on }\partial\Omega \},\) where \(\mathbf{n} := n_1 + \mathrm{i} n_2\) and \(\partial_z, \partial_{\bar{z}}\) are the Wirtinger operators. The spectrum of \(D^\Omega\) is symmetric with respect to the origin and constituted of eigenvalues of finite multiplicity \[ \cdots \leq -E_k(\Omega) \leq\cdots \leq-E_{1}(\Omega) < 0 < E_{1}(\Omega) \leq \cdots \leq E_k(\Omega) \leq \cdots.\] The authors prove the following estimate \[E_1(\Omega) \leq \frac{|\partial\Omega|}{(\pi r_i^2 + |\Omega|)}E_1({\mathbb D}) \] with equality if and only if \(\Omega\) is a disk, where \(r_i\) is the inradius of \(\Omega\) and \(\mathbb D\) is the unit disk.
The second main result of this paper is the following non-linear variational characterization of \(E_1(\Omega)\). \(E > 0\) is the first non-negative eigenvalue of \(D^\Omega\) if and only if \(\mu^\Omega(E) = 0\), where \[\mu^\Omega(E) := \inf\limits_{u} \frac{4 \int_\Omega |\partial_{\bar z} u|^2 dx - E^2 \int_{\Omega}|u|^2dx + E \int_{\partial\Omega} |u|^2 ds}{\int_\Omega |u|^2 dx}.\]
The authors propose the following conjecture \[\mu^\Omega(E) \geq \frac{\pi}{|\Omega|}\mu^{\mathbb D}\Big(\sqrt{\frac{|\Omega|}{\pi}}E\Big), \forall E>0\] and provide numerical evidences supporting it. This conjecture implies the validity of the Faber-Krahn-type inequality \(E_1(\Omega) \geq \sqrt{\frac{\pi}{|\Omega|}} E_1({\mathbb D})\) (it is still an open question).

MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
81R25 Spinor and twistor methods applied to problems in quantum theory
30H20 Bergman spaces and Fock spaces
30H10 Hardy spaces
35J10 Schrödinger operator, Schrödinger equation
35P05 General topics in linear spectral theory for PDEs
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
47J20 Variational and other types of inequalities involving nonlinear operators (general)
49J40 Variational inequalities

References:

[1] Agricola, I.; Friedrich, T., Upper bounds for the first eigenvalue of the Dirac operator on surfaces, J. Geom. Phys, 30, 1, 1-22 (1999) · Zbl 0941.58018 · doi:10.1016/S0393-0440(98)00032-1
[2] Antunes, PRS, Extremal p-Laplacian eigenvalues, Nonlinearity, 32, 5087-5109 (2019) · Zbl 1425.35130 · doi:10.1088/1361-6544/ab47c5
[3] Arrizabalaga, N.; Le Treust, L.; Mas, A.; Raymond, N., The MIT bag model as an infinite mass limit, Journal de l’École Polytechnique - Mathématiques, Tome, 6, 329-365 (2019) · Zbl 1420.35094 · doi:10.5802/jep.95
[4] Arrizabalaga, N.; Le Treust, L.; Raymond, N., On the MIT bag model in the non-relativistic limit, Commun. Math. Phys., 354, 641 (2017) · Zbl 1373.81422 · doi:10.1007/s00220-017-2916-8
[5] Arrizabalaga, N.; Mas, A.; Vega, L., Shell interactions for Dirac operators, J. Math. Pures Appl., 102, 617-639 (2014) · Zbl 1297.81083 · doi:10.1016/j.matpur.2013.12.006
[6] Bär, C., Lower eigenvalue estimates for Dirac operator, Math. Ann., 293, 39-46 (1992) · Zbl 0741.58046 · doi:10.1007/BF01444701
[7] Bär, C., Extrinsic bounds for eigenvalues of the Dirac operator, Ann. Glob. Anal. Geom., 16, 2, 573-596 (1998) · Zbl 0921.58065 · doi:10.1023/A:1006550532236
[8] Barbaroux, J.-M., Cornean, H.D., Le Treust, L., Stockmeyer, E.: Resolvent convergence to Dirac operators on planar domains. Ann. Henri Poincaré 20, (2019) · Zbl 1414.81103
[9] Behrndt, J.; Holzmann, M.; Ourmières-Bonafos, T.; Pankrashkin, K., Two-dimensional Dirac operators with singular interactions supported on closed curves, J. Funct. Anal., 279, 46 (2020) · Zbl 1446.35155 · doi:10.1016/j.jfa.2020.108700
[10] Bell, S.R.: The Cauchy Transform. Potential Theory and Conformal Mapping, 2nd edn. Chapman & Hall Book, Boca Raton (2016) · Zbl 1359.30001
[11] Benguria, RD; Fournais, S.; Van Den Bosch, H.; Stockmeyer, E., Self-adjointness of two dimensional Dirac operators on domains, Ann. Henri Poincaré, 18, 1371-1383 (2017) · Zbl 1364.81117 · doi:10.1007/s00023-017-0554-5
[12] Benguria, R.D, Fournais, S., Van Den Bosch, H., Stockmeyer, E.: Spectral gaps of Dirac operators describing graphene quantum dots. Math. Phys. Geom. 20, article 11 (2017) · Zbl 1424.81011
[13] Bossel, M..-H.: Membranes élastiquement liées: Extension du théorème de Rayleigh-Faber-Krahn et de l’inégalité de Cheeger. C. R. Acad. Sci. Paris Sér. I Math 302, 47-50 (1986) · Zbl 0606.73018
[14] Brezis, H., Analyse fonctionnelle (1983), Masson, Paris: Théorie et applications. Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris · Zbl 0511.46001
[15] Daners, D., A Faber-Krahn inequality for Robin problems in any dimensions, Math. Ann., 335, 767-785 (2006) · Zbl 1220.35103 · doi:10.1007/s00208-006-0753-8
[16] Dolbeault, J., Esteban, M.J., Séré, E.: On the eigenvalues of operators with gaps. Application to Dirac operators. J. Funct. Anal. 174, 208-226 (2000) · Zbl 0982.47006
[17] Dolbeault, J.; Esteban, MJ; Séré, E., A variational method for relativistic computations in atomic and molecular physics, Int. J. Quantum Chem., 93, 149-155 (2003) · doi:10.1002/qua.10549
[18] Faber, G.: Beweis, daß unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt. Münch. Ber. 169-172 (1923) · JFM 49.0342.03
[19] Fefferman, CL; Weinstein, M., Honeycomb lattice potentials and Dirac points, J. Am. Math. Soc., 25, 1169-1220 (2012) · Zbl 1316.35214 · doi:10.1090/S0894-0347-2012-00745-0
[20] Flyer, N.; Fornberg, B., Solving PDEs with radial basis functions, Acta Numer., 24, 215-258 (2015) · Zbl 1316.65073 · doi:10.1017/S0962492914000130
[21] Garnett, JB; Marshall, DE, Harmonic Measure (2005), Cambridge: Cambridge University Press, Cambridge · Zbl 1077.31001 · doi:10.1017/CBO9780511546617
[22] Griesemer, M.; Siedentop, H., A minimax principle for the eigenvalues in spectral gaps, J. Lond. Math. Soc., 60, 2, 490-500 (1999) · Zbl 0651.34030 · doi:10.1112/S0024610799007930
[23] Holzmann, M.; Ourmières-Bonafos, T.; Pankrashkin, K., Dirac operators with Lorentz scalar interactions, Rev. Math. Phys., 30, 5, 1850013 (2018) · Zbl 1393.35194 · doi:10.1142/S0129055X18500137
[24] Kansa, EJ, Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics-I: surface approximations and partial derivative estimates, Comput. Math. Appl., 19, 127-145 (1990) · Zbl 0692.76003 · doi:10.1016/0898-1221(90)90270-T
[25] Kato, T.: Perturbation theory for linear operators. Berlin: Springer, Reprint of the corr. print. of the 2nd ed. 1980 (1995) · Zbl 0836.47009
[26] Krahn, E., Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises, Math. Ann., 94, 97-100 (1925) · JFM 51.0356.05 · doi:10.1007/BF01208645
[27] Le Treust, L.; Ourmières-Bonafos, T., Self-adjointness of Dirac operators with infinite mass boundary conditions in sectors, Ann. Henri Poincaré, 19, 5, 1465-1487 (2018) · Zbl 1388.81108 · doi:10.1007/s00023-018-0661-y
[28] Lotoreichik, V.; Ourmières-Bonafos, T., A sharp upper bound on the spectral gap for graphene quantum dots, Math. Phys. Anal. Geom., 22, 13 (2019) · Zbl 1428.35251 · doi:10.1007/s11040-019-9310-z
[29] McLean, W., Strongly Elliptic Systems and Boundary Integral Equations (2000), Cambridge: Cambridge University Press, Cambridge · Zbl 0948.35001
[30] Moroianu, A., Ourmières-Bonafos, T., Pankrashkin, K.: Dirac operators on hypersurfaces as large mass limits. Comm. Math. Phys. 374, 1963-2013 (2020). Preprint ArXiv:181103340 · Zbl 1445.35273
[31] Ourmières-Bonafos, T.; Vega, L., A strategy for self-adjointness of Dirac operators: applications to the MIT bag model and \(\delta \)-shell interactions, Publ. Mat., 62, 2, 397-437 (2018) · Zbl 06918953 · doi:10.5565/PUBLMAT6221804
[32] Pythe, KP, Complex Analysis (2016), Boca Raton: Conformal Inequalities and the Bieberbach conjecture. CRC Press, Boca Raton · Zbl 1345.30001
[33] Raulot, S., The Hijazi inequality on manifolds with boundary, J. Geom. Phys., 56, 11, 2189-2202 (2006) · Zbl 1102.53033 · doi:10.1016/j.geomphys.2005.11.013
[34] Saranen, J.; Vainikko, G., Periodic Integral and Pseudodifferential Equations with Numerical Approximations (2002), Berlin: Springer, Berlin · Zbl 0991.65125 · doi:10.1007/978-3-662-04796-5
[35] Sauter, S.A., Schwab, C.: Boundary Elements Methods. Translated and Expanded from the 2004 German Original, Springer Series in Computational Mathematics, 39, Springer, Berlin (2011). https://www.springer.com/gp/book/9783540680925
[36] Schimmer, L., Solovej, J.P., Tokus, S.: Friedrichs Extension and Min-Max Principle for Operators with a Gap. To appear in Ann. Henri Poincaré, 21, 327-357 (2020), preprint ArXiv:1806.05206 · Zbl 1432.49065
[37] Schmidt, KM, A remark on boundary value problems for the Dirac operator, Q. J. Math., 46, 4, 509-516 (1995) · Zbl 0864.35092 · doi:10.1093/qmath/46.4.509
[38] Stockmeyer, E.; Vugalter, S., Infinite mass boundary conditions for Dirac operators, J. Spectr. Theory, 9, 2, 569-600 (2019) · Zbl 1419.81014 · doi:10.4171/JST/256
[39] Szegő, G., Inequalities for certain eigenvalues of a membrane of given area, J. Ration. Mech. Anal., 3, 354-356 (1954) · Zbl 0055.08802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.