×

Discrete Bethe-Sommerfeld conjecture for triangular, square, and hexagonal lattices. (English) Zbl 07308598

Summary: We prove the discrete Bethe-Sommerfeld conjecture on the graphene lattice, on its dual lattice (the triangular lattice), and on the extended Harper lattice. For each of these lattice geometries, we analyze the behavior of small periodic potentials. In particular, we provide sharp bounds on the number of gaps that may perturbatively open, we describe sharp arithmetic criteria on the periods that ensure that no gaps open, and we characterize those energies at which gaps may open in the perturbative regime. In all three cases, we provide examples that open the maximal number of gaps and estimate the scaling behavior of the gap lengths as the coupling constant goes to zero.

MSC:

47Axx General theory of linear operators
37Nxx Applications of dynamical systems
11Pxx Additive number theory; partitions
37Axx Ergodic theory
82Cxx Time-dependent statistical mechanics (dynamic and nonequilibrium)

References:

[1] Avila, A.; Jitomirskaya, S.; Marx, C., Spectral theory of extended Harper’s model and a question by Erdős and Szekeres, Invent. Math., 210, 283-339 (2017) · Zbl 1380.37019 · doi:10.1007/s00222-017-0729-1
[2] Becker, S.; Zworski, M., Magnetic oscillations in a model of graphene, Comm. Math. Phys., 367, 941-989 (2019) · Zbl 1417.82035 · doi:10.1007/s00220-019-03409-4
[3] Becker, S.; Han, R.; Jitomirskaya, S., Cantor spectrum of graphene in magnetic fields, Invent. Math., 218, 979-1041 (2019) · Zbl 1447.82041 · doi:10.1007/s00222-019-00916-y
[4] Bellissard, J.; Simon, B., Cantor spectrum for the almost Mathieu equation, J. Funct. Anal., 48, 408-419 (1982) · Zbl 0516.47018 · doi:10.1016/0022-1236(82)90094-5
[5] Berkolaiko, G.; Comech, A., Symmetry and Dirac points in graphene spectrum, J. Spectr. Theory, 8, 1099-1148 (2018) · Zbl 1411.35092 · doi:10.4171/JST/223
[6] Brouwer, A.; Haemers, W., Spectra of Graphs (2012), New York: Springer, New York · Zbl 1231.05001 · doi:10.1007/978-1-4614-1939-6
[7] Castro Neto, A. H.; Guinea, F.; Peres, N. M R.; Novoselov, K. S.; Geim, A., The electronic properties of graphene, Rev. Mod. Phys., 81, 109-162 (2009) · doi:10.1103/RevModPhys.81.109
[8] Chung, F., Spectral Graph Theory (1997), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0867.05046
[9] Cvetković, D.; Doob, M.; Gutman, I.; Torĝasev, A., Recent Results in the Theory of Graph Spectra (1988), Amsterdam: Elsevier, Amsterdam · Zbl 0634.05054
[10] Cvetković, D.; Doob, M.; Sachs, H., Spectra of Graphs (1995), Heidelberg: J. A. Barth, Heidelberg · Zbl 0824.05046
[11] Delplace, P.; Montambaux, G., WKB analysis of edge states in graphene in a strong magnetic field, Phys. Rev. B, 82, 205412 (2010) · doi:10.1103/PhysRevB.82.205412
[12] Embree, M.; Fillman, J., Spectra of discrete two-dimensional periodic Schrödinger operators with small potentials, J. Spectr. Theory, 9, 1063-1087 (2019) · Zbl 1436.35095 · doi:10.4171/JST/271
[13] Fefferman, C.; Weinstein, M., Honeycomb lattice potentials and Dirac points, J. Amer. Math. Soc., 25, 1169-1220 (2012) · Zbl 1316.35214 · doi:10.1090/S0894-0347-2012-00745-0
[14] C. Fefferman and M. Weinstein, Edge States of continuum Schroedinger operators for sharply terminated honeycomb structures, arXiv:1810.03497.
[15] Fefferman, C.; Lee-Thorp, J. P.; Weinstein, M., Honeycomb Schroedinger operators in the strong binding regime, Commun. Pure Appl. Math., 71, 1178-1270 (2018) · Zbl 1414.35061 · doi:10.1002/cpa.21735
[16] J. Fillman and R. Han, preprint in preparation.
[17] Gieseker, D.; Knörrer, H.; Trubowitz, E., The Geometry of Algebraic Fermi Curves (1993), Boston, MA: Academic Press, Boston, MA · Zbl 0778.14011
[18] Han, R., Absence of point spectrum for the self-dual extended Harper’s model, Int. Math. Res. Not. IMRN, 9, 2801-2809 (2018) · Zbl 1407.82014
[19] Han, R., Dry Ten Martini problem for the non-self-dual extended Harper’s model, Trans. Amer. Math. Soc., 370, 197-217 (2018) · Zbl 06801940 · doi:10.1090/tran/6989
[20] Han, R.; Jitomirskaya, S., Full measure reducibility and localization for quasiperiodic Jacobi operators: A topological criterion, Adv. Math., 319, 224-250 (2017) · Zbl 06776225 · doi:10.1016/j.aim.2017.08.026
[21] Han, R.; Jitomirskaya, S., Discrete Bethe-Sommerfeld Conjecture, Commun. Math. Phys., 361, 205-216 (2018) · Zbl 1403.35190 · doi:10.1007/s00220-018-3141-9
[22] Han, J. H.; Thouless, D. J.; Hiramoto, H.; Kohmoto, M., Critical and bicritical properties of Harper’s equation with next-nearest-neighbor coupling, Phys. Rev. B, 50, 11365 (1994) · doi:10.1103/PhysRevB.50.11365
[23] Helffer, B.; Kerdelhué, P.; Royo-Letelier, J., Chambers’s formula for the graphene and the Hou model with kagome periodicity and applications, Ann. Henri Poincaré, 17, 795-818 (2016) · Zbl 1341.82125 · doi:10.1007/s00023-015-0415-z
[24] Helffer, B.; Mohamed, A., Asymptotics of the density of states for the Schrödinger operator with periodic electric potential, Duke Math. J., 92, 1-60 (1998) · Zbl 0951.35104 · doi:10.1215/S0012-7094-98-09201-8
[25] Jitomirskaya, S.; Marx, C. A., Analytic quasi-perodic cocycles with singularities and the Lyapunov exponent of extended Harper’s model, Comm. Math. Phys., 316, 237-267 (2012) · Zbl 1277.37007 · doi:10.1007/s00220-012-1465-4
[26] Karpeshina, Y. E., Perturbation Theory for the Schrödinger Operator with a Periodic Potential (1997), Berlin: Springer, Berlin · Zbl 0883.35002 · doi:10.1007/BFb0094264
[27] Korotyaev, E.; Saburova, N., Schrödinger operators on periodic discrete graphs, J. Math. Anal. Appl., 420, 576-611 (2014) · Zbl 1297.47050 · doi:10.1016/j.jmaa.2014.05.088
[28] H. Krüger, Periodic and limit-periodic discrete Schrödinger operators, preprint, arXiv:1108.1584
[29] Kuchment, P.; Post, O., On the spectra of carbon nano-structures, Comm. Math. Phys., 275, 805-882 (2007) · Zbl 1145.81032 · doi:10.1007/s00220-007-0316-1
[30] Van Mouche, P., The coexistence problem for the discrete Mathieu operator, Comm. Math. Phys., 122, 23-33 (1989) · Zbl 0669.34016 · doi:10.1007/BF01221406
[31] Novoselov, K., Nobel lecture: Graphene: Materials in the flatland, Rev. Modern Phys., 83, 837-849 (2011) · doi:10.1103/RevModPhys.83.837
[32] Parnovski, L., Bethe-Sommerfeld conjecture, Ann. Henri Poincaré, 9, 457-508 (2008) · Zbl 1201.81054 · doi:10.1007/s00023-008-0364-x
[33] Parnovski, L.; Sobolev, A. V., On the Bethe-Sommerfeld conjecture for the polyharmonic operator, Duke Math. J., 107, 209-238 (2001) · Zbl 1092.35025 · doi:10.1215/S0012-7094-01-10721-7
[34] Parnovski, L.; Sobolev, A. V., Perturbation theory and the Bethe-Sommerfeld conjecture, Ann. Henri Poincaré, 2, 573-581 (2001) · Zbl 1162.35434 · doi:10.1007/PL00001046
[35] Popov, V. N.; Skriganov, M., A remark on the spectral structure of the two dimensional Schrödinger operator with a periodic potential, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 109, 131-133 (1981) · Zbl 0492.47024
[36] Post, O., Spectral Analysis on Graph-Like Spaces (2012), Heidelberg: Springer, Heidelberg · Zbl 1247.58001 · doi:10.1007/978-3-642-23840-6
[37] Skriganov, M., Proof of the Bethe-Sommerfeld conjecture in dimension two, Soviet Math. Dokl., 20, 89-90 (1979) · Zbl 0417.35063
[38] Skriganov, M., Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators, Proc. Steklov Math. Inst., 171, 3-122 (1984)
[39] Skriganov, M., The spectrum band structure of the three-dimensional Schrödinger operator with periodic potential, Inv. Math., 80, 107-121 (1985) · Zbl 0578.47003 · doi:10.1007/BF01388550
[40] Thouless, D. J., Bandwidth for a quasiperiodic tight binding model, Phys. Rev. B, 28, 4272-4276 (1983) · doi:10.1103/PhysRevB.28.4272
[41] Veliev, O. A., Spectrum of multidimensional periodic operators, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen, 49, 17-34 (1988) · Zbl 0664.47005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.