×

Magnetic oscillations in a model of graphene. (English) Zbl 1417.82035

Summary: We consider a quantum graph as a model of graphene in constant magnetic field and describe the density of states in terms of relativistic Landau levels satisfying a Bohr-Sommerfeld quantization condition. That provides semiclassical corrections (with the magnetic flux as the semiclassical parameter) in the study of magnetic oscillations.

MSC:

82D80 Statistical mechanics of nanostructures and nanoparticles
05C90 Applications of graph theory
81S10 Geometry and quantization, symplectic methods
82D40 Statistical mechanics of magnetic materials

References:

[1] Becker, S., Han, R., Jitomirskaya, S.: Cantor spectrum in graphene. arXiv:1803.00988 (2018) · Zbl 1447.82041
[2] Brüning J., Geyler V., Pankrashkin K.: Cantor and band spectra for periodic quantum graphs with magnetic fields. Commun. Math. Phys. 269(1), 87-105 (2007) · Zbl 1113.81053 · doi:10.1007/s00220-006-0050-0
[3] Carmier P., Ullmo D.: Berry phase in graphene: a semiclassical perspective. Phys. Rev. B 77, 245413 (2008) · doi:10.1103/PhysRevB.77.245413
[4] Champelde T., Mineev VP.: The de Haas – van Alphen effect in two-and quasi-two-dimensional metals and superconductors. Philos. Mag. B 81, 55-74 (2001) · doi:10.1080/13642810108216525
[5] de Verdière YC.: Spectre conjoint d’opérateurs pseudo-différentiels qui commutent. II. Le cas intégrable. Math. Z. 171, 51-73 (1980) · Zbl 0478.35073 · doi:10.1007/BF01215054
[6] Dimassi M., Sjöstrand J.: Spectral Asymptotics in the Semi-Classical Limit. Cambridge University Press, Cambridge (1999) · Zbl 0926.35002 · doi:10.1017/CBO9780511662195
[7] Dyatlov, S., Zworski, M.: Mathematical theory of scattering resonances, book in preparation. http://math.mit.edu/dyatlov/res/ · Zbl 1369.37037
[8] Fefferman C., Weinstein M.: Honeycomb lattice potentials and Dirac points. J. Am. Math. Soc. 25, 1169-1220 (2012) · Zbl 1316.35214 · doi:10.1090/S0894-0347-2012-00745-0
[9] Gomes K.K., Mar W., Ko W., Guinea F., Manoharan H.C.: Designer Dirac fermions and topological phases in molecular graphene. Nature 483, 306-310 (2012) · doi:10.1038/nature10941
[10] Gat, O., Avron, J.E.: Semiclassical analysis and the magnetization of the Hofstadter model. Phys. Rev. Lett. 91(18), (2003)
[11] Gusynin V., Sharapov S.: Magnetic oscillations in planar systems with the Dirac-like spectrum of quasiparticle excitations. II. Transport properties. Phys. Rev. B 71, 125124 (2005) · doi:10.1103/PhysRevB.71.125124
[12] Gusynin V., Sharapov S.: Transport of Dirac quasiparticles in graphene: Hall and optical conductivities. Phys. Rev. B 73, 245411 (2006) · doi:10.1103/PhysRevB.73.245411
[13] Helffer, B., Kerdelhué, P., Royo-Letelier, J.: Chambers’s formula for the graphene and the Hou model with Kagome periodicity and applications. Ann. H. Poincaré 17(4) (2016) · Zbl 1341.82125
[14] Hörmander L.: The Analysis of Linear Partial Differential Operators I. Springer, Berlin (2003) · Zbl 1028.35001 · doi:10.1007/978-3-642-61497-2
[15] Helffer B., Robert D.: Puits de potentiel généralisés et asymptotique semi-classique. Ann. Inst. H. Poincaré Phys. Théor. 41, 291-331 (1984) · Zbl 0565.35082
[16] Helffer, B., Sjöstrand, J.: Analyse semi-classique pour l’équation de Harper (avec application à l’équation de Schrödinger avec champ magnétique). Mém. Soc. Math. France (N.S.) 34 (1989) · Zbl 0714.34130
[17] Helffer, B., Sjöstrand, J.: Equation de Schrödinger avec champ magnétique et équation de Harper. In: Schrödinger operators (Sønderborg, 1988). Lecture Notes in Phys., vol. 345, pp. 118-197, Springer, Berlin (1989) · Zbl 0714.34130
[18] Helffer, B., Sjöstrand, J.: Analyse semi-classique pour l’équation de Harper. II. Comportement semi-classique près d’un rationnel. Mém. Soc. Math. France (N.S.) 40 (1990) · Zbl 0714.34131
[19] Helffer, B., Sjöstrand, J.: On diamagnetism and de Haas – van Alphen effect. Ann. Inst. H. Poincaré Phys. Théor. 52(6), 303-375 (1990) · Zbl 0715.35070
[20] Küppersbusch C., Küppersbusch C., Küppersbusch C.: Modifications of the Lifshitz-Kosevich formula in two-dimensional Dirac systems. Phys. Rev. B 96, 205410 (2017) · doi:10.1103/PhysRevB.96.205410
[21] Kishigi K., Hasegawa Y.: Quantum oscillations of magnetization in tight-binding electrons on a honeycomb lattice. Phys. Rev. B 90, 085427 (2014) · doi:10.1103/PhysRevB.90.085427
[22] Kerdlhué, P., Royo-Letelier, J.: On the low lying spectrum of the magnetic Schrödinger operator with kagome periodicity. Rev. Math. Phys. 26(10) (2014) · Zbl 1309.35097
[23] Kuchment P., Post O.: On the spectra of carbon nano-structures. Commun. Math. Phys. 275(3), 805-82 (2007) · Zbl 1145.81032
[24] Kostrykin V., Schrader R.: Quantum wires with magnetic fluxes. Commun. Math. Phys. 237, 161-179 (2003) · Zbl 1037.81044 · doi:10.1007/s00220-003-0831-7
[25] Luk’yanchuka A.: De Haas – van Alphen effect in 2D systems: application to mono- and bilayer graphene. Low Temp. Phys. 37, 45 (2011) · doi:10.1063/1.3551529
[26] Onsager L.: Interpretation of the de Haas – van Alphen effect. Philos. Mag. 7, 43 (1952)
[27] Pankrashkin K.: Spectra of Schrödinger operators on equilateral quantum graphs. Lett. Math. Phys. 77(2), 139-154 (2006) · Zbl 1113.81056 · doi:10.1007/s11005-006-0088-0
[28] Polini M., Guinea F., Lewenstein M., Manoharan H.C., Pellegrini V.: Artificial honeycomb lattices for electrons, atoms and photons. Nat. Nanotechnol. 8, 625-633 (2013) · doi:10.1038/nnano.2013.161
[29] Reed, M., Simon, B.: Analysis of Operators. Methods of Modern Mathematical Physics, vol. IV. Elsevier, Amsterdam (1978) · Zbl 0401.47001
[30] Shoenberg D.: Magnetic Oscillations in Metals. Cambridge University Press, Cambridge (1984) · doi:10.1017/CBO9780511897870
[31] Schmüdgen, K.: Unbounded Self-Adjoint Operators on Hilbert Space. Graduate Texts in Mathematics, Springer, Berlin (2012) · Zbl 1257.47001
[32] Sharapov S.G., Gusynin V.P, Beck H.: Magnetic oscillations in planar systems with the Dirac-like spectrum of quasiparticle excitations. Phys. Rev. B. 69, 075104 (2004) · doi:10.1103/PhysRevB.69.075104
[33] Sjöstrand, J.: Microlocal analysis for periodic magnetic Schrödinger equation and related questions. In: Bony J.-M., Grubb G., Hörmander L., Komatsu H., Sjöstrand J. (eds.) Microlocal Analysis and Applications. Lecture Notes in Mathematics, vol. 1495, Springer, berlin (1989)
[34] Sjöstrand J., Zworski M.: Elementary linear algebra for advanced spectral problems. Ann. Inst. Fourier 57, 2095-2141 (2007) · Zbl 1140.15009 · doi:10.5802/aif.2328
[35] Stauber T., Parida P., Trushin M., Ulybyshev M.V., Boyda D.L., Schliemann J.: Interacting electrons in graphene: fermi velocity renormalization and optical response. Phys. Rev. Lett. 118, 266801 (2017) · doi:10.1103/PhysRevLett.118.266801
[36] Tan Z., Tan C., Ma L., Liu G., Lu L., Yang C.: Shubnikov – de Haas oscillations of a single layer graphene under dc current bias. Phys. Rev. B 84, 115429 (2011) · doi:10.1103/PhysRevB.84.115429
[37] Waldmann D. et al.: Bottom-gated epitaxial graphene. Nat. Mater. 10, 357-360 (2011) · doi:10.1038/nmat2988
[38] Weinstein A.: Asymptotics of the eigenvalues clusters for the laplacian plus a potential. Duke Math. J. 44, 883-892 (1977) · Zbl 0385.58013 · doi:10.1215/S0012-7094-77-04442-8
[39] Zworski, M.: Semiclassical Analysis. Graduate Studies in Mathematics, vol. 138. AMS, Providence (2012) · Zbl 1252.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.