×

Threefold Weyl points for the Schrödinger operator with periodic potentials. (English) Zbl 1497.35403

The authors consider the existence of Weyl points in the \(L^2(\mathbb{R}^3)\)-spectrum of the three-dimensional Schrödinger operator \[ H=-\triangle+V(\mathbf{x}) \ \ (\mathbf{x}\in\mathbb{R}^3) \] where \(V(\mathbf{x})\) is a real-valued and periodic potential. The admissible potentials play an essential role in this consideration. In other words \(V(\mathbf{x})\in C^{\infty}(\mathbb{R}^3)\) has certain symmetries defined in the paper. Note that the Weyl points are degenerate, i.e. points on the spectral bands at which energy bands intersect conically. By Floquet-Bloch theory discussed by P. Kuchment [Floquet theory for partial differential equations. Basel: Birkhäuser Verlag (1993; Zbl 0789.35002); Bull. Am. Math. Soc., New Ser. 53, No. 3, 343–414 (2016; Zbl 1346.35170)] as well P. Kuchment and S. Levendorskiĭ [Trans. Am. Math. Soc. 354, No. 2, 537–569 (2002; Zbl 1058.35174)], the spectrum of \(H\) in \(L^2(\mathbb{R}^3)\) is the union of all energy bands \(E_b(\mathbf{k})\) (\(b\geq 1\)), for all \(\mathbf{k}\) in the Brillouin zone. For given \(V(\mathbf{x})\), two energy bands may intersect with each other conically at some \(\mathbf{k}\). This degenerate point \(\mathbf{k}\) in the 3-D energy bands is called a Weyl point. There exist different Weyl points depending on the multiplicity of degeneracy. It turns out that the threefold Weyl points are conically intersection points of two energy bands with an extra band sandwiched in between. Taking into account that the threefold and three-dimensional conical structures, must be ensured it is introduced some new symmetry on the considered model.
Finally it is shown numerical simulations on typical potentials which illustrate the main ideas in the paper.

MSC:

35Q40 PDEs in connection with quantum mechanics
35Q60 PDEs in connection with optics and electromagnetic theory
35P99 Spectral theory and eigenvalue problems for partial differential equations

References:

[1] M. Ablowitz, C. Curtis, and Y. Zhu, Localized nonlinear edge states in honeycomb lattices, Phys. Rev. A, 88 (2013), 013850.
[2] M. Ablowitz, S. Nixon, and Y. Zhu, Conical diffraction in honeycomb lattices, Phys. Rev. A, 79 (2009), 053830.
[3] M. Ablowitz and Y. Zhu, Nonlinear waves in shallow honeycomb lattices, SIAM J. Appl. Math., 72 (2012), pp. 240-260. · Zbl 1258.41012
[4] G. Allaire, M. Palombaro, and J. Rauch, Diffractive geometric optics for Bloch wave packets, Arch. Ration. Mech. Anal., 202 (2011), pp. 373-426. · Zbl 1269.78004
[5] H. Ammari, H. Fitzpatrick, E. Hiltunen, H. Lee, and S. Yu, Honeycomb-lattice Minnaert bubbles, SIAM J. Math. Anal., 52 (2020), pp. 5441-5466. · Zbl 1451.35023
[6] H. Ammari, E. Hiltunen, and S. Yu, A high-frequency homogenization approach near the Dirac points in bubbly honeycomb crystals, Arch. Ration. Mech. Anal., 238 (2020), pp. 1559-1583. · Zbl 1466.74035
[7] C. Avila, H. Schulz-Baldes, and C. Villegas-Blas, Topological invariants of edge states for periodic two-dimensional models, Math. Phys. Anal. Geom., 16 (2013), pp. 137-170. · Zbl 1271.81210
[8] G. Bal, Continuous bulk and interface description of topological insulators, J. Math. Phys., 60 (2019), 081506. · Zbl 1435.82027
[9] G. Berkolaiko and A. Comech, Symmetry and Dirac points in graphene spectrum, J. Spectr. Theory, 8 (2018), pp. 1099-1147. · Zbl 1411.35092
[10] B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J. Cava, and B. A. Bernevig, Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals, Science, 353 (2016), aaf5037. · Zbl 1355.81174
[11] A. Drouot, Ubiquity of Conical Points in Topological Insulators, arXiv:2004.07068, 2020. · Zbl 1516.57046
[12] A. Drouot and M. I. Weinstein, Edge states and the valley Hall effect, Adv. Math., 368 (2020), 107142. · Zbl 1442.82003
[13] M. S. P. Eastham, The Spectral Theory of Periodic Differential Equations, Texts Math. (Edinburgh), Scottish Academic Press, Edinburgh, 1973. · Zbl 0287.34016
[14] C. Fang, M. Gilbert, X. Dai, and B. A. Bernevig, Multi-Weyl topological semimetals stabilized by point group symmetry, Phys. Rev. Lett., 108 (2012), 266802.
[15] C. L. Fefferman, J. Lee-Thorp, and M. I. Weinstein, Honeycomb Schrödinger operators in the strong binding regime, Comm. Pure Appl. Math., 71 (2018), pp. 1178-1270. · Zbl 1414.35061
[16] C. L. Fefferman, J. P. Lee-Thorp, and M. I. Weinstein, Topologically protected states in one-dimensional continuous systems and Dirac points, Proc. Natl. Acad. Sci. USA, 111 (2014), pp. 8759-8763. · Zbl 1355.34124
[17] C. L. Fefferman, J. P. Lee-Thorp, and M. I. Weinstein, Edge states in honeycomb structures, Ann. PDE, 2 (2016), 12. · Zbl 1404.35128
[18] C. L. Fefferman and M. I. Weinstein, Honeycomb lattice potentials and Dirac points, J. Amer. Math. Soc., 25 (2012), pp. 1169-1220. · Zbl 1316.35214
[19] C. L. Fefferman and M. I. Weinstein, Continuum Schroedinger operators for sharply terminated graphene-like structures, Comm. Math. Phys., 380 (2020), pp. 853-945. · Zbl 1454.82053
[20] M. Gil’, Norm Estimations for Operator-valued Functions and Applications, Monogr. Textb. Pure Appl. Math. 192, Marcel Dekker, New York, 1995. · Zbl 0840.47006
[21] N. Goldman, J. Beugnon, and F. Gerbier, Detecting chiral edge states in the Hofstadter optical lattice, Phys. Rev. Lett., 108 (2012), 255303.
[22] G. Graf and M. Porta, Bulk-edge correspondence for two-dimensional topological insulators, Comm. Math. Phys., 324 (2013), pp. 851-895. · Zbl 1291.82120
[23] J. Guglielmon, M. C. Rechtsman, and M. I. Weinstein, Landau levels in strained two-dimensional photonic crystals, Phys. Rev. A, 103 (2021), 013505.
[24] P. Hu, L. Hong, and Y. Zhu, Linear and nonlinear electromagnetic waves in modulated honeycomb media, Stud. Appl. Math., 144 (2020), pp. 18-45. · Zbl 1454.35372
[25] R. T. Keller, J. L. Marzuola, B. Osting, and M. I. Weinstein, Spectral band degeneracies of \(\frac{\pi}{2} \)-rotationally invariant periodic Schrödinger operators, Multiscale Model. Simul., 16 (2018), pp. 1684-1731. · Zbl 1412.35283
[26] P. Kuchment, Floquet Theory for Partial Differential Equations, Oper. Theory Adv. Appl. 60, Birkhäuser Verlag, Basel, 1993. · Zbl 0789.35002
[27] P. Kuchment, An overview of periodic elliptic operators, Bull. Amer. Math. Soc. (N.S.), 53 (2016), pp. 343-414. · Zbl 1346.35170
[28] P. Kuchment and S. Levendorskiǐ, On the structure of spectra of periodic elliptic operators, Trans. Amer. Math. Soc., 354 (2002), pp. 537-569. · Zbl 1058.35174
[29] M. Lee, Dirac cones for point scatterers on a honeycomb lattice, SIAM J. Math. Anal., 48 (2016), pp. 1459-1488. · Zbl 1342.35283
[30] J. P. Lee-Thorp, M. I. Weinstein, and Y. Zhu, Elliptic operators with honeycomb symmetry: Dirac points, edge states and applications to photonic graphene, Arch. Ration. Mech. Anal., 232 (2019), pp. 1-63. · Zbl 1410.78024
[31] Z. Liu, B. Zhou, Y. Zhang, Z. Wang, H. Weng, D. Prabhakaran, S. Mo, Z. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. Chen, Discovery of a three-dimensional topological Dirac semimetal, NA3BI, Science, 343 (2014), pp. 864-867.
[32] L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. Joannopoulos, and M. Soljačić, Experimental observation of Weyl points, Science, 349 (2015), pp. 622-624. · Zbl 1355.81088
[33] B. Lv, N. Xu, H. Weng, J. Ma, P. Richard, X. Huang, L. Zhao, G. Chen, C. Matt, and F. Bisti, Observation of Weyl nodes in TaAs, Nature Phys., 11 (2015), pp. 724-727.
[34] C. M. and M. Weinstein, High Contrast Elliptic Operators in Honeycomb Structures, arXiv:2004.07068, 2021. · Zbl 1481.35291
[35] H. Miao, T. T. Zhang, L. Wang, D. Meyers, A. H. Said, Y. L. Wang, Y. G. Shi, H. M. Weng, Z. Fang, and M. P. M. Dean, Observation of double Weyl phonons in parity-breaking FeSi, Phys. Rev. Lett., 121 (2018), 035302.
[36] S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Öhberg, E. Andersson, and R. Thomson, Observation of a localized flat-band state in a photonic Lieb lattice, Phys. Rev. Lett., 114 (2015), 245504.
[37] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Modern Phys., 81 (2009), pp. 109-162.
[38] K. S. Novoselov, Nobel Lecture: Graphene: Materials in the flatland, Rev. Modern Phys., 83 (2011), pp. 837-849.
[39] P. Pal, Dirac, Majorana, and Weyl fermions, Am. J. Phys., 79 (2011), pp. 485-498.
[40] M. L. Patrick, X. Liu, S. Tsirkin, T. Neupert, and T. Bzdu \(\check{s}\) ek, Multi-band Nodal Links in Triple-point Materials, arXiv:2008.02807, 2020.
[41] P. Perez-Piskunow, G. Usaj, C. A. Balseiro, and L. F. Torres, Floquet chiral edge states in graphene, Phys. Rev. B, 89 (2014), 121401.
[42] Z. Rao, H. Li, T. Zhang, S. Tian, C. Li, B. Fu, C. Tang, L. Wang, Z. Li, and W. Fan, Observation of unconventional chiral fermions with long Fermi arcs in CoSi, Nature, 567 (2019), pp. 496-499.
[43] M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, Academic Press, New York, 1972. · Zbl 0242.46001
[44] M. Sánchez-Martínez, F. de Juan, and A. Grushin, Linear optical conductivity of chiral multifold fermions, Phys. Rev. B, 99 (2019), 155145.
[45] X. Shi and J. Yang, Spin-1 Weyl point and surface arc state in a chiral phononic crystal, Phys. Rev. B, 101 (2020), 214309.
[46] N. Sidorov, B. Loginov, A. Sinitsyn, and M. Falaleev, Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications, Math. Appl. 550, Kluwer, Dordrecht, 2002. · Zbl 1027.47001
[47] A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, and B. Bernevig, Type-II Weyl semimetals, Nature, 527 (2015), pp. 495-498.
[48] Y. Sun, Y. Zhang, C. Felser, and B. Yan, Strong intrinsic spin Hall effect in the TaAs family of Weyl semimetals, Phys. Rev. Lett., 117 (2016), 146403.
[49] P. Tang, Q. Zhou, and S. Zhang, Multiple types of topological fermions in transition metal silicides, Phys. Rev. Lett., 119 (2017), 206402.
[50] P. R. Wallace, The band theory of graphite, Phys. Rev., 71 (1947), pp. 622-634. · Zbl 0033.14304
[51] X. Wan, A. Turner, A. Vishwanath, and S. Savrasov, Topological semimetal and fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B, 83 (2011), 205101.
[52] A. Watson and M. Weinstein, Wave packets in inhomogeneous periodic media: Propagation through a one-dimensional band crossing, Comm. Math. Phys., 363 (2018), pp. 655-698. · Zbl 1400.81103
[53] C. Wilcox, Theory of Bloch waves, J. Anal. Math., 33 (1978), pp. 146-167. · Zbl 0408.35067
[54] H.-S. Wong and D. Akinwande, Carbon Nanotube and Graphene Device Physics, Cambridge University Press, Cambridge, UK, 2011.
[55] P. Xie and Y. Zhu, Wave packet dynamics in slowly modulated photonic graphene, J. Differential Equations, 267 (2019), pp. 5775-5808. · Zbl 1428.35561
[56] P. Xie and Y. Zhu, Wave Packets in the Fractional Nonlinear Schrödinger Equation with a Honeycomb Potential, arXiv:2006.05928, 2020. · Zbl 1470.35299
[57] J. Yang, Nonlinear Waves in Integrable and Non-Integrable Systems, SIAM, Philadelphia, 2010. · Zbl 1234.35006
[58] Y. Yang, H. Sun, J. Xia, H. Xue, Z. Gao, Y. Ge, D. Jia, S. Yuan, Y. Chong, and B. Zhang, Topological triply degenerate point with double fermi arcs, Nature Phys., (2018), pp. 1-5.
[59] Z. Yang, M. Xiao, F. Gao, L. Lu, Y. Chong, and B. Zhang, Weyl points in a magnetic tetrahedral photonic crystal, Opt. Express, 25 (2017), pp. 15772-15777.
[60] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, Dirac semimetal in three dimensions, Phys. Rev. Lett., 108 (2012), 140405.
[61] T. Zhang, Z. Song, A. Alexandradinata, H. Weng, C. Fang, L. Lu, and Z. Fang, Double-Weyl phonons in transition-metal monosilicides, Phys. Rev. Lett., 120 (2018), 016401.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.