×

Reducible Fermi surface for multi-layer quantum graphs including stacked graphene. (English) Zbl 1468.81052

Summary: We construct two types of multi-layer quantum graphs (Schrödinger operators on metric graphs) for which the dispersion function of wave vector and energy is proved to be a polynomial in the dispersion function of the single layer. This leads to the reducibility of the algebraic Fermi surface, at any energy, into several components. Each component contributes a set of bands to the spectrum of the graph operator. When the layers are graphene, AA-, AB-, and ABC-stacking are allowed within the same multi-layer structure. One of the tools we introduce is a surgery-type calculus for obtaining the dispersion function for a periodic quantum graph by joining two graphs together. Reducibility of the Fermi surface allows for the construction of local defects that engender bound states at energies embedded in the radiation continuum.

MSC:

81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
05C12 Distance in graphs
81U30 Dispersion theory, dispersion relations arising in quantum theory
81V74 Fermionic systems in quantum theory
82D80 Statistical mechanics of nanostructures and nanoparticles
35P05 General topics in linear spectral theory for PDEs
80A21 Radiative heat transfer

References:

[1] Abergel, D.S.L., Apalkov, V., Berashevich, J., Ziegler, K., Chakraborty, T.: Properties of graphene: a theoretical perspective. Adv. Phys. 59(4), 261-482 (2010)
[2] Albeverio, S.; Gesztesy, F.; Høegh-Krohn, R.; Holden, H., Solvable Models in Quantum Mechanics (1988), Heidelberg: Springer, Heidelberg · Zbl 0679.46057
[3] Amovilli, C.; Leys, FE; March, NH, Electronic energy spectrum of two-dimensional solids and a chain of C atoms from a quantum network model, J. Math. Chem., 36, 93-112 (2004) · Zbl 1052.81689
[4] Ando, K., Isozaki, H., Korotyaev, E., Morioka, H.: Inverse scattering on the quantum graph for graphene (2021). arXiv:2102.05217
[5] Bao, C.; Yao, W.; Wang, E.; Chen, C.; Avila, J.; Asensio, MC; Zhou, S., Stacking dependent electronic structure of trilayer graphene resolved by nanospot angle-resolved photoemission spectroscopy, Nano Lett., 17, 3, 564-1568 (2017)
[6] Bättig, D.: A toroidal compactification of the two-dimensional Bloch-manifold. Ph.D. thesis, ETH-ürich (1988)
[7] Bättig, D., A toroidal compactification of the Fermi surface for the discrete Schrödinger operator, Comment. Math. Helvetici, 67, 1-16 (1992) · Zbl 0812.58068
[8] Bättig, D.; Knörrer, H.; Trubowitz, E., A directional compactification of the complex Fermi surface, Compositio Math., 79, 2, 205-229 (1991) · Zbl 0754.58038
[9] Becker, S.; Han, R.; Jitomirskaya, S., Cantor spectrum of graphene in magnetic fields, Inventiones Mathematicae, 218, 3, 979-1041 (2019) · Zbl 1447.82041
[10] Berkolaiko, G.; Comech, A., Symmetry and Dirac points in graphene spectrum, J. Spect. Theor., 8, 1099-1147 (2018) · Zbl 1411.35092
[11] Berkolaiko, G.; Kennedy, JB; Kurasov, P.; Mugnolo, D., Surgery principles for the spectral analysis of quantum graphs, Trans. Am. Math. Soc., 372, 5153-5197 (2019) · Zbl 1451.34029
[12] Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs, volume 186 of Mathematical Surveys and Monographs. AMS (2013) · Zbl 1318.81005
[13] Brown, B.M., Schmidt, K.M., Shipman, S.P., Wood, I.: The inverse problem for a spectral asymmetry function of the Schrödinger operator on a finite interval (2020). arXiv:2009.03483 [math.SP]
[14] Campos, LC; Taychatanapat, T.; Serbyn, M.; Surakitbovorn, K.; Watanabe, K.; Taniguchi, T.; Abanin, DA; Jarillo-Herrero, P., Landau level splittings, phase transitions, and nonuniform charge distribution in trilayer graphene, Phys. Rev. Lett., 117, 066601 (2016)
[15] Castro, E.V., Novoselov, K.S., Morozov, S.V., Peres, N.M.R., Lopes dos Santos, J.M.B., Nilsson, J.G., Geim, A.K., Castro Neto, A.H.: Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007)
[16] The electronic properties of graphene, Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K, Rev. Mod. Phys., 81, 109-162 (2009)
[17] Cheon, T.; Exner, P.; Turek, O., Approximation of a general singular vertex coupling in quantum graphs, Ann. Phys., 325, 3, 548-578 (2010) · Zbl 1192.81159
[18] Coulson, CA, Note on the applicability of the free-electron network model to metals, Proc. Phys. Soc. Sect. A, 67, 7, 608-614 (1954) · Zbl 0055.44403
[19] da Rocha, V.L.: Multilayer Graphene through quantum periodic graphs: Dirac cones. Ph.D. thesis, Universidade Federal de São Carlos (2020)
[20] de Oliveira, C.R., Rocha, V.L.: Dirac cones for bi- and trilayer Bernal-stacked graphene in a quantum graph model (2020). arXiv:2011.08658
[21] de Oliveira, CR; Rocha, VL, Dirac cones for graph models of multilayer AA-stacked graphene sheets, Z. Naturforsch., 76, 4, 371-384 (2021)
[22] Do, NT; Kuchment, P., Quantum graph spectra of a graphyne structure, Nanoscale Syst. MMTA, 2, 107-123 (2013) · Zbl 1273.81067
[23] Eastham, M.S.P.: The Spectral Theory of Periodic Differential Equations. Scottish Acad. Press, Edinburgh-London (1973) · Zbl 0287.34016
[24] Exner, P., Keating, J.P., Kuchment, P., Sunada, T., Teplayaev, A. (eds.): Analysis on Graphs and its Applications, vol. 77 (2008) · Zbl 1143.05002
[25] Exner, P.; Post, O., Convergence of spectra of graph-like thin manifolds, J. Geom. Phys., 54, 1, 77-115 (2005) · Zbl 1095.58007
[26] Exner, P.; Post, O., Approximation of quantum graph vertex couplings by scaled Schrödinger operators on thin branched manifolds, J. Phys. A: Math. Theor., 42, 41, 415305 (2009) · Zbl 1179.81080
[27] Fan, S., Joannopoulos, J.D.: Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65(23), 235112-1-8 (2002)
[28] Fan, S.; Villeneuve, PR; Joannopoulos, JD, Rate-equation analysis of output efficiency and modulation rate of photonic-crystal light-emitting diodes, IEEE J. Quantum Electron., 36, 10, 1123-1130 (2000)
[29] Fano, U., Effects of configuration interaction on intensities and phase shifts, Phys. Rev., 124, 6, 1866-1878 (1961) · Zbl 0116.23405
[30] Fefferman, CL; Weinstein, MI, Honeycomb lattice potentials and Dirac points, J. AMS, 25, 4, 1169-1220 (2012) · Zbl 1316.35214
[31] Gieseker, D.; Knörrer, H.; Trubowitz, E., The Geometry of Algebraic Fermi Curves (1993), Boston: Academic Press, Boston · Zbl 0778.14011
[32] Hsu, C.W., Zhen, B., Chua, S.-L., Johnson, S.G., Joannopoulos, J.D., Soljacic, M.: Bloch surface eigenstates within the radiation continuum. Light: Science App. 2, e84 (2013). doi:10.1038/Isa.2013.40
[33] Kim, KS; Walter, AL; Moreschini, L.; Seyller, T.; Horn, K.; Rotenberg, E.; Bostwick, A., Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene, Nat. Mater., 12, 10, 887-892 (2013)
[34] Korotyaev, E.; Lobanov, I., Schrödinger operators on zigzag nanotubes, Ann. Henri Poincaré, 275, 3, 805-826 (2007) · Zbl 1375.81098
[35] Korotyaev, E.; Lobanov, I., Zigzag periodic nanotube in magnetic field, Lett. Math. Phys., 83, 83-95 (2008) · Zbl 1136.81370
[36] Kuchment, P., Graph models for waves in thin structures, Waves Random Media, 12, 4, R1-R24 (2002) · Zbl 1063.35525
[37] Kuchment, P., An overview of periodic elliptic operators, Bull. Am. Math. Soc., 53, 3, 343-414 (2016) · Zbl 1346.35170
[38] Kuchment, P.; Post, O., On the spectra of carbon nano-structures, Comm. Math. Phys., 275, 805-826 (2007) · Zbl 1145.81032
[39] Kuchment, P.; Vainberg, B., On absence of embedded eigenvalues for Schrödinger operators with perturbed periodic potentials, Commun. Part. Differ. Equat., 25, 9-10, 1809-1826 (2000) · Zbl 0960.35077
[40] Kuchment, P.; Vainberg, B., On the structure of eigenfunctions corresponding to embedded eigenvalues of locally perturbed periodic graph operators, Commun. Math. Phys., 268, 3, 673-686 (2006) · Zbl 1125.39021
[41] Kuchment, P., Zhao, J.: Analyticity of the spectrum and Dirichlet-to-Neumann operator technique for quantum graphs. J. Math. Phys. 60(093502) (2019) · Zbl 1422.81110
[42] Latil, S.; Henrard, L., Charge carriers in few-layer graphene films, Phys. Rev. Lett., 97, 036803 (2006)
[43] Leys, F.; Amovilli, C.; March, N., Topology, connectivity, and electronic structure of C and B cages and the corresponding nanotubes, J. Chem. Inf. Comput. Sci., 44, 1, 122-135 (2004)
[44] Li, W.; Shipman, SP, Irreducibility of the Fermi surface for planar periodic graph operators (2020), Phys: Lett. Math, Phys · Zbl 1502.39010
[45] Liu, H., Jiang, H., Xie, X.C.: Intrinsic superconductivity in ABA-stacked trilayer graphene. AIP Adv. 2, 041405 (2012)
[46] Liu, W.: Irreducibility of the Fermi variety for discrete periodic Schrodinger operators and embedded eigenvalues (2020). arXiv:2006.04733
[47] McCann, E., Asymmetry gap in the electronic band structure of bilayer graphene, Phys. Rev. B, 74, 161403 (2006)
[48] McCann, E.; Abergel, DSL; Fal’ko, VI, The low energy electronic band structure of bilayer graphene, Eur. Phys. J. Special Topics, 148, 91-103 (2007)
[49] McCann, E.; Abergel, DSL; Fal’ko, VI, The low energy electronic band structure of bilayer graphene, Eur. Phys. J. Special Top., 148, 1, 91-103 (2007)
[50] Niikuni, H., Spectral band structure of periodic Schrödinger operators with two potentials on the degenerate zigzag nanotube, J. Appl. Math. Comput., 50, 453-482 (2016) · Zbl 1334.34066
[51] Partoens, B.; Peeters, FM, From graphene to graphite: Electronic structure around the \(K\) point, Phys. Rev. B, 74, 075404 (2006)
[52] Pöschel, J., Trubowitz, E.: Inverse Spectral Theory, volume 130 of Pure and Applied Mathematics. Academic Press (1987) · Zbl 0623.34001
[53] Rozhkov, AV; Sboychakov, AO; Rakhmanov, AL; Nori, F., Single-electron gap in the spectrum of twisted bilayer graphene, Phys. Rev. B, 95, 045119 (2017)
[54] Rozhkova, AV; Sboychakova, AO; Rakhmanova, AL; Nori, F., Electronic properties of graphene-based bilayer systems, Phys. Rep., 648, 1-104 (2016)
[55] Ruedenberg, K., Scherr, C.W.: Free-electron network model for conjugated systems. i. Theory. J. Chem. Phys. 21, 1565-1581 (1953)
[56] Sboychakov, AO; Rakhmanov, AL; Rozhkov, AV; Nori, F., Electronic spectrum of twisted bilayer graphene, Phys. Rev. B, 92, 075402 (2015)
[57] Schenker, JH; Aizenman, M., The creation of spectral gaps by graph decoration, Lett. Math. Phys., 53, 3, 253-262 (2000) · Zbl 0990.47006
[58] Shipman, S.P.: Resonant Scattering by Open Periodic Waveguides, volume 1 of E-Book, Progress in Computational Physics (Ch. 2). Bentham Science Publishers (2010)
[59] Shipman, SP, Eigenfunctions of unbounded support for embedded eigenvalues of locally perturbed periodic graph operators, Commun. Math. Phys., 332, 2, 605-626 (2014) · Zbl 1301.39015
[60] Shipman, SP, Reducible Fermi surfaces for non-symmetric bilayer quantum-graph operators, J. Spectr. Theory (2019) · Zbl 1505.47040 · doi:10.4171/JST/285
[61] Shipman, SP; Tillay, J., Spectra of semi-infinite quantum graph tubes, Lett. Math. Phys., 106, 1317-1343 (2016) · Zbl 1350.81014
[62] Shipman, S.P., Venakides, S.: Resonant transmission near non-robust periodic slab modes. Phys. Rev. E 71(1), 026611-1-10 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.