×

Wave mechanics in media pinned at Bravais lattice points. (English) Zbl 1330.74090

Summary: The propagation of waves through microstructured media with periodically arranged inclusions has applications in many areas of physics and engineering, stretching from photonic crystals through to seismic metamaterials. In the high-frequency regime, modeling such behavior is complicated by multiple scattering of the resulting short waves between the inclusions. Our aim is to develop an asymptotic theory for modeling systems with arbitrarily shaped inclusions located on general Bravais lattices. We then consider the limit of pointlike inclusions, the advantage being that exact solutions can be obtained using Fourier methods, and go on to derive effective medium equations using asymptotic analysis. This approach allows us to explore the underlying reasons for dynamic anisotropy, localization of waves, and other properties typical of such systems, and in particular their dependence upon geometry. Solutions of the effective medium equations are compared with the exact solutions, shedding further light on the underlying physics. We focus on examples that exhibit dynamic anisotropy as these demonstrate the capability of the asymptotic theory to pick up detailed qualitative and quantitative features.

MSC:

74J99 Waves in solid mechanics
74M25 Micromechanics of solids
74Q05 Homogenization in equilibrium problems of solid mechanics

References:

[1] G. Allaire and A. Piatnitski, {\it Homogenisation of the Schrödinger equation and effective mass theorems}, Comm. Math. Phys., 258 (2005), pp. 1-22. · Zbl 1081.35092
[2] T. Antonakakis and R. V. Craster, {\it High frequency asymptotics for microstructured thin elastic plates and platonics}, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 468 (2012), pp. 1408-1427. · Zbl 1364.74071
[3] T. Antonakakis, R. V. Craster, and S. Guenneau, {\it Asymptotics for metamaterials and photonic crystals}, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 469 (2013), 20120533. · Zbl 1328.74048
[4] T. Antonakakis, R. V. Craster, and S. Guenneau, {\it High-frequency homogenization of zero frequency stop band photonic and phononic crystals}, New J. Phys, 15 (2013), 103014.
[5] T. Antonakakis, R. V. Craster, and S. Guenneau, {\it Homogenization for elastic photonic crystals and metamaterials}, J. Mech. Phys. Solids, 71 (2014), pp. 84-96. · Zbl 1328.74048
[6] T. Antonakakis, R. V. Craster, and S. Guenneau, {\it Moulding and shielding flexural waves in elastic plates}, Eur. Phys. Lett., 105 (2014), 54004. · Zbl 1328.74048
[7] M. V. Ayzenberg-Stepanenko and L. I. Slepyan, {\it Resonant-frequency primitive waveforms and star waves in lattices}, J. Sound Vibration, 313 (2008), pp. 812-821.
[8] N. Bakhvalov and G. Panasenko, {\it Homogenization: Averaging Processes in Periodic Media}, Kluwer, Amsterdam, 1989. · Zbl 0692.73012
[9] A. Bensoussan, J. L. Lions, and G. Papanicolaou, {\it Asymptotic Analysis for Periodic Structures}, North-Holland, Amsterdam, 1978. · Zbl 0404.35001
[10] M. Sh. Birman and T. A. Suslina, {\it Homogenization of a multidimensional periodic elliptic operator in a neighborhood of the edge of an internal gap}, J. Math. Sci., 136 (2006), pp. 3682-3690.
[11] C. Boutin, A. Rallu, and S. Hans, {\it Large scale modulation of high frequency waves in periodic elastic composites}, J. Mech. Phys. Solids, 70 (2014), pp. 362-381. · Zbl 1328.74006
[12] L. Brillouin, {\it Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices}, 2nd ed., Dover, New York, 1953. · Zbl 0050.45002
[13] S. Brule, E. Javelaud, S. Enoch, and S. Guenneau, {\it Experiments on seismic metamaterials moulding surface waves}, Phys. Rev. Lett., 112 (2014), 133901.
[14] D. N. Chigrin, S. Enoch, C. M. Sotomayer Torres, and G. Tayeb, {\it Self-guiding in two-dimensional photonic crystals}, Optics Express, 11 (2003), pp. 1203-1211.
[15] D. J. Colquitt, R. V. Craster, and M. Makwana, {\it High frequency homogenisation for elastic lattices}, Quart. J. Mech. Appl. Math., 68 (2015), pp. 203-230. · Zbl 1317.74077
[16] D. J. Colquitt, I. S. Jones, N. V. Movchan, A. B. Movchan, and R. C. McPhedran, {\it Dynamic anisotropy and localization in elastic lattice systems}, Waves Random Complex Media, 22 (2012), pp. 143-159. · Zbl 1291.74119
[17] R. V. Craster, T. Antonakakis, M. Makwana, and S. Guenneau, {\it Dangers of using the edges of the Brillouin zone}, Phys. Rev. B (3), 86 (2012), 1151300.
[18] R. V. Craster and S. Guenneau, eds., {\it Acoustic Metamaterials}, Springer-Verlag, Dordrecht, 2012.
[19] R. V. Craster, L. M. Joseph, and J. Kaplunov, {\it Long-wave asymptotic theories: The connection between functionally graded waveguides and periodic media}, Wave Motion, 51 (2014), pp. 581-588. · Zbl 1456.74070
[20] R. V. Craster, J. Kaplunov, and A. V. Pichugin, {\it High frequency homogenization for periodic media}, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 466 (2010), pp. 2341-2362. · Zbl 1196.35038
[21] K. B. Dossou, L. C. Botten, R. C. McPhedran, A. A. Asatryan, and C. Martijn de Sterke, {\it Gap-edge asymptotics of defect modes in two-dimensional photonic crystals}, Optics Express, 15 (2007), pp. 4753-4762.
[22] M. Dubois, M. Farhat, E.Bossy, S.Enoch, S.Guenneau, and P. Sebbah, {\it Flat lens for pulse focusing of elastic waves in thin plates}, Appl. Phys. Lett., 103 (2013), 071915.
[23] D. V. Evans and R. Porter, {\it Penetration of flexural waves through a periodically constrained thin elastic plate floating in {\it vacuo} and floating on water}, J. Engrg. Math., 58 (2007), pp. 317-337. · Zbl 1117.74014
[24] M. Farhat, S. Guenneau, and S. Enoch, {\it High-directivity and confinement of flexural waves through ultrarefraction in thin perforated plates}, Eur. Phys. Lett., 91 (2010), 54003.
[25] M. Farhat, S. Guenneau, S. Enoch, A. B. Movchan, and G. Petursson, {\it Focussing bending waves via negative refraction in perforated thin plates}, Appl. Phys. Lett., 96 (2010), 081909.
[26] C. L Fefferman and M. I. Weinstein, {\it Honeycomb lattice potentials and Dirac points}, J. Amer. Math. Soc., 25 (2012), pp. 1169-1220. · Zbl 1316.35214
[27] E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. J. Kippenberg, and I. Robert-Philip, {\it Optomechanical coupling in a two-dimensional photonic crystal defect cavity}, Phys. Rev. Lett., 106 (2011), 203902.
[28] D. Gridin, R. V. Craster, and A. T. I. Adamou, {\it Trapped modes in curved elastic plates}, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 461 (2005), pp. 1181-1197. · Zbl 1145.74376
[29] M. A. Hoefer and M. I. Weinstein, {\it Defect modes and homogenization of periodic Schrödinger operators}, SIAM J. Math. Anal., 43 (2011), pp. 971-996. · Zbl 1242.35032
[30] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, {\it Photonic Crystals, Molding the Flow of Light}, 2nd ed., Princeton University Press, Princeton, NJ, 2008. · Zbl 1144.78303
[31] J. Kaplunov, {\it Equations for high-frequency long-wave vibrations of an elastic layer lying on an acoustic half-space}, Dokl. Akad. Nauk SSSR, 309 (1989), pp. 1077-1081.
[32] J. D. Kaplunov, G. A. Rogerson, and P. E. Tovstik, {\it Localized vibration in elastic structures with slowly varying thickness}, Quart. J. Mech. Appl. Math., 58 (2005), pp. 645-664. · Zbl 1088.74027
[33] C. Kittel, {\it Introduction to Solid State Physics}, 7th ed., John Wiley & Sons, New York, 1996. · Zbl 0052.45506
[34] R. S. Langley, {\it The response of two-dimensional periodic structures to point harmonic forcing}, J. Sound Vibration, 197 (1997), pp. 447-469.
[35] B. R. Mace, {\it The vibration of plates on two-dimensionally periodic point supports}, J. Sound Vibration, 192 (1996), pp. 629-643.
[36] S. Mahmoodian, R. C. McPhedran, C. Martijn de Sterke, K. B. Dossou, C. G. Poulton, and L. C. Botten, {\it Single and coupled degenerate defect modes in two-dimensional photonic crystal band gaps}, Phys. Rev. A (3), 79 (2009), 013814.
[37] M. Makwana and R. V. Craster, {\it Localised point defect states in asymptotic models of discrete lattices}, Quart. J. Mech. Appl. Math., 66 (2013), pp. 289-316. · Zbl 1291.70052
[38] M. Makwana and R. V. Craster, {\it Homogenisation for hexagonal lattices and honeycomb structures}, Quart. J. Mech. Appl. Math., 67 (2014), pp. 599-630. · Zbl 1309.74064
[39] R. C. McPhedran, A. B. Movchan, N. V. Movchan, M. Brun, and M. J. A Smith, {\it Trapped Modes and Steered Dirac Cones in Platonic Crystals}, preprint, arXiv:1410.0393, 2015.
[40] P. D. Metcalfe, {\it Localization and Delocalization on Fluid-Loaded Elastic Structures}, Ph.D. thesis, DAMTP, University of Cambridge, Cambridge, 2002.
[41] A. B. Movchan, N. V. Movchan, and R. C. McPhedran, {\it Bloch-Floquet bending waves in perforated thin plates}, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. A, 463 (2007), pp. 2505-2518. · Zbl 1130.74019
[42] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, {\it The electronic properties of graphene}, Rev. Modern Phys., 81 (2009), pp. 109-162.
[43] J. F. Nye, {\it Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations}, Institute of Physics, Bristol, England, 1999. · Zbl 0984.78002
[44] C. G. Poulton, A. B. Movchan, N. V. Movchan, and R. C. McPhedran, {\it Analytic theory of defects in periodically structured elastic plates}, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 468 (2012), pp. 1196-1216. · Zbl 1364.74059
[45] M. Rupin, F. Lemoult, G. Lerosey, and P. Roux, {\it Experimental demonstration of ordered and disordered multiresonant metamaterials for lamb waves}, Phys. Rev. Lett., 112 (2014), 234301.
[46] E. Sanchez-Palencia, {\it Non-Homogeneous Media and Vibration Theory}, Springer-Verlag, Berlin, 1980. · Zbl 0432.70002
[47] M. J. A. Smith, M. H. Meylan, and R. C. McPhedran, {\it Flexural wave filtering and platonic polarisers in thin elastic plates}, Quart. J. Mech. Appl. Math., 66 (2013), pp. 437-463. · Zbl 1291.74117
[48] D. Torrent, D. Mayou, and J. Sanchez-Dehesa, {\it Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates}, Phys. Rev. B (3), 87 (2013), 115143.
[49] Z. Wu, K. Xie, and H. Yang, {\it Band gap properties of two-dimensional photonic crystals with rhombic lattice}, Optik, 123 (2012), pp. 534-536.
[50] Z. H. Wu, K. Xie, H. J. Yang, P. Jiang, and X. J. He, {\it All-angle self-collimation in two-dimensional rhombic-lattice photonic crystals}, J. Opt., 14 (2012), 015002.
[51] F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, {\it Foundations of Photonic Crystal Fibres}, Imperial College Press, London, 2005.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.