×

Gaussian cubature arising from hybrid characters of simple Lie groups. (English) Zbl 1317.65070

The authors extend the ideas on multivariate Chebyshev polynomials, nodes, and cubature formulas presented by H. Li and Y. Xu [J. Fourier Anal. Appl. 16, No. 3, 383–433 (2010; Zbl 1194.42006)] and by R. V. Moody and J. Patera [Adv. Appl. Math. 47, No. 3, 509–535 (2011; Zbl 1228.41025)]. This approach leads to Gaussian cubature formulas for families of multivariate polynomials arising from the characters of irreducible representations of any simple Lie group.
Now the authors present new cubature formulas based on the hybrid characters of a simple Lie group. In the short root case, the authors obtain new Gaussian cubature formulas. In the long root case, they preserve new Radau cubature formulas. The nodes for these cubature formulas arise quite naturally from elements of finite order of the Lie group. Finally, the results are illustrated for the Lie group \(G_2\).

MSC:

65D32 Numerical quadrature and cubature formulas
33C52 Orthogonal polynomials and functions associated with root systems
22E46 Semisimple Lie groups and their representations
43A80 Analysis on other specific Lie groups
41A55 Approximate quadratures
41A63 Multidimensional problems

References:

[1] Bourbaki, N.: Groupes et Algèbres de Lie, Ch. 4,5,6, Èlèments de Mathèmatiques. Hermann, Paris (1968) · Zbl 0186.33001
[2] Cools, R.: Constructing cubature formulae: the science behind the art. Acta Num. 6, 1-54 (1997) · Zbl 0887.65028 · doi:10.1017/S0962492900002701
[3] Eier, R., Lidl, R.: A class of orthogonal polynomials in k variables. Math. Ann. 260, 99-106 (1982) · Zbl 0474.33009 · doi:10.1007/BF01475757
[4] Heckman, G., Schlichtkrull, H.: Harmonic Analysis and Special Functions on Symmetric Spaces. Academic Press Inc., San Diego (1994) · Zbl 0836.43001
[5] Hoffman, M.E., Withers, W.D.: Generalized Chebyshev polynomials associated with affine Weyl groups. Trans. AMS 308(1), 91-104 (1988) · Zbl 0681.33020 · doi:10.1090/S0002-9947-1988-0946432-3
[6] Hrivnák, J., Patera, J.: On discretization of tori of compact simple Lie groups. J. Phys. A 42, 385208 (2009) · Zbl 1181.65152 · doi:10.1088/1751-8113/42/38/385208
[7] Hrivnák, J., Motlochová, L., Patera, J.: On discretization of tori of compact simple Lie groups II. J. Phys. A 45, 255201 (2012) · Zbl 1247.65178 · doi:10.1088/1751-8113/45/25/255201
[8] Kass, S., Moody, R.V., Patera, J., Slansky, R.: Affine Lie Algebras,Weight Multiplicities, and Branching Rules, vol. 1. University of California Press, Berkeley (1990) · Zbl 0785.17028
[9] Klimyk, A.U., Patera, J.: Antisymmetric orbit functions. SIGMA 3, Paper 023, p. 83 (2007) · Zbl 1138.33001
[10] Klimyk, A.U., Patera, J.: Orbit functions. SIGMA 2, Paper 006, p. 60 (2006) · Zbl 1118.33004
[11] Koornwinder, T.H.: Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. I, II. Indag. Math. Proc. 77(1), 48-66 (1974) · Zbl 0263.33011 · doi:10.1016/1385-7258(74)90013-4
[12] Koornwinder, T.H.: Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. III, IV. Indag. Math. Proc. 77(4), 357-381 (1974) · Zbl 0291.33013 · doi:10.1016/1385-7258(74)90026-2
[13] Koornwinder, T.: Two-Variable Analogues of the Classical Orthogonal Polynomials, Theory and Application of Special Functions, Math. Res. Center, Univ. Wisconsin, Publ. No. 35, pp. 435-495. Academic Press, New York (1975) · Zbl 0326.33002
[14] Li, H., Sun, J., Xu, Y.: Discrete Fourier analysis and Chebyshev polynomials with \[G_2\] G2 group, SIGMA 8. Paper 067, 29 (2012) · Zbl 1270.41002
[15] Li, H., Xu, Y.: Discrete Fourier analysis on fundamental domain and simplex of \[A_d\] Ad lattice in \[d\] d-variables. J. Fourier Anal. Appl. 16, 383-433 (2010) · Zbl 1194.42006 · doi:10.1007/s00041-009-9106-9
[16] Moody, R.V., Patera, J.: Characters of elements of finite order in simple Lie groups. SIAM J. Algebr. Discret. Methods 5, 359-383 (1984) · Zbl 0555.22004 · doi:10.1137/0605037
[17] Moody, R.V., Patera, J.: Cubature formulae for orthogonal polynomials in terms of elements of finite order of compact simple Lie groups. Adv. Appl. Math. 47, 509-535 (2011) · Zbl 1228.41025 · doi:10.1016/j.aam.2010.11.005
[18] Moody, R.V., Pianzola, A.: \[ \lambda\] λ-mapping between representation rings of Lie algebras. Can. J. Math. 35, 898-960 (1983) · Zbl 0503.17005 · doi:10.4153/CJM-1983-051-x
[19] Munthe-Kaas, HZ; Nome, M.; Ryland, BN; Cucker, F. (ed.); Krick, T. (ed.); Pinkus, A. (ed.), Through the kaleidoscope: symmetries, groups and Chebyshev approximations from a computational point of view, 188-229 (2012), Budapest · Zbl 1316.65122
[20] Munthe-Kaas, HZ; Ryland, BN; Hesthaven, JS (ed.); Rønquist, EM (ed.), On multivariate Chebyshev polynomials and spectral approximations on triangles (2011), Berlin · Zbl 1216.65035
[21] Patera, J., Sharp, R.T., Slansky, R.: On a new relation between semisimple Lie algebras. J. Math. Phys. 21, 2335-2341 (1980) · Zbl 0448.17010 · doi:10.1063/1.524689
[22] Serre, J.-P.: Algèbres de Lie Semi-simples Complexes. Benjamin, Elmsford (1966). [English trans. Complex Semisimple Lie Algebras. Springer (2001)] · Zbl 0144.02105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.