×

Spatial sampling design for parameter estimation of the covariance function. (English) Zbl 1066.62092

Summary: We study the spatial optimal sampling design for covariance parameter estimation. The spatial process is modeled as a Gaussian random field and maximum likelihood (ML) is used to estimate the covariance parameters. We use the log determinant of the inverse Fisher information matrix as the design criterion and run simulations to investigate the relationship between the inverse Fisher information matrix and the covariance matrix of the ML estimates. A simulated annealing algorithm is developed to search for an optimal design among all possible designs on a fine grid. Since the design criterion depends on the unknown parameters, we define relative efficiency of a design and consider minimax and Bayesian criteria to find designs that are robust for a range of parameter values. Simulation results are presented for the Matérn class of covariance functions.

MSC:

62M30 Inference from spatial processes
65C60 Computational problems in statistics (MSC2010)
62K05 Optimal statistical designs
62M40 Random fields; image analysis
86A32 Geostatistics
Full Text: DOI

References:

[1] Abramowitz, M.; Stegun, I., Handbook of Mathematical Functions (1965), Dover: Dover New York
[2] Abt, M.; Welch, W. J., Fisher information and maximum likelihood estimation of covariance parameters in Gaussian stochastic processes, Canad. J. Statist., 26, 127-137 (1998) · Zbl 0899.62124
[3] Atkinson, A. C.; Donev, A. N., Optimum Experimental Designs (1992), Oxford University Press: Oxford University Press Oxford · Zbl 0829.62070
[4] Benhenni, K.; Cambanis, S., Sampling designs for estimating integrals of stochastic processes, Ann. Statist., 20, 161-194 (1992) · Zbl 0749.60033
[5] Bogaert, P.; Russo, D., Optimal spatial sampling design for the estimation of the variogram based on a least squares approach, Water Resour. Res., 35, 1275-1289 (1999)
[6] Bueso, M. C.; Angulo, J. M.; Alonso, F. J., A state-space model approach to optimum spatial sampling design based on entropy (Disc: p45-47), Environ. Ecol. Statist., 5, 29-44 (1998)
[7] Chaloner, K.; Verdinelli, I., Bayesian experimental designa review, Statist. Sci., 10, 273-304 (1995) · Zbl 0955.62617
[8] Chen, H.-S.; Simpson, D. G.; Ying, Z., Infill asymptotics for a stochastic process model with measurement error, Statist. Sinica, 10, 1, 141-156 (2000) · Zbl 0970.62061
[9] Cressie, N.; Hawkins, D. M., Robust estimation of the variogram, I, J. Internat. Assoc. Math. Geol., 12, 115-125 (1980)
[10] Currin, C.; Mitchell, T.; Morris, M.; Ylvisaker, D., Bayesian prediction of deterministic functions, with applications to the design and analysis of computer experiments, J. Amer. Statist. Assoc., 86, 953-963 (1991)
[11] DeOliveira, V.; Kedem, B.; Short, D. A., Bayesian prediction of transformed Gaussian random fields, J. Amer. Statist. Assoc., 92, 1422-1433 (1997) · Zbl 0919.62020
[12] Gao, F.; Sacks, J.; Welch, W. J., Predicting urban ozone levels and trends with semiparametric modeling, J. Agric. Biol. Environ. Statist., 1, 404-425 (1996)
[13] Handcock, M. S.; Stein, M. L., A Bayesian analysis of kriging, Technometrics, 35, 403-410 (1993)
[14] Handcock, M. S.; Wallis, J. R., An approach to statistical spatical-temporal modeling of meteorological fields, J. Amer. Statist. Assoc., 89, 368-378 (1994) · Zbl 0798.62109
[15] Hochbaum, D. S., Approximation Algorithms for NP-hard Problems (1997), PWS Publishing Company: PWS Publishing Company New York
[16] Jackson, R. B.; Caldwell, M. M., Geostatistical patterns of soil heterogeneity around individual perennial plants, J. Ecol., 81, 683-692 (1993)
[17] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P., Optimization by simulated annealing, Science, 220, 671-680 (1983) · Zbl 1225.90162
[18] Ko, C.; Lee, J.; Queyranne, M., An exact algorithm for maximum entropy sampling, Oper. Res., 43, 684-691 (1995) · Zbl 0857.90069
[19] Lark, R., Optimized spatial sampling of soil for estimation of the variogram by maximum likelihood, Geoderma, 105, 49-80 (2002)
[20] Mardia, K. V.; Marshall, R. J., Maximum likelihood estimation of models for residual covariance in spatial regression, Biometrika, 71, 135-146 (1984) · Zbl 0542.62079
[21] Matheron, G., 1962. Traite de Geostatistique Appliquee, Tome II: Le Krigeage, Memoires du Bureau de Recherches Geologiques et Minieres, No 24. Edition Technip., Paris.; Matheron, G., 1962. Traite de Geostatistique Appliquee, Tome II: Le Krigeage, Memoires du Bureau de Recherches Geologiques et Minieres, No 24. Edition Technip., Paris.
[22] McBratney, A. B.; Webster, R.; Burgess, T. M., The design of optimal sampling schemes for local estimation and mapping of regionalized variables, I—Theory and method, Comput. Geosci., 7, 331-334 (1981)
[23] McMillan, N. J.; Sacks, J.; Welch, W. J.; Gao, F., Analysis of protein activity data by Gaussian stochastic process models, J. Biopharm. Statist., 9, 145-160 (1999) · Zbl 0944.92011
[24] Morris, M. D., On counting the number of data pairs for semivariogram estimation, Math. Geol., 23, 929-943 (1991)
[25] Müller, W. G.; Zimmerman, D. L., Optimal designs for variogram estimation, Environmetrics, 10, 23-37 (1999)
[26] Oliver, M. A.; Khayrat, A. L., A geostatistical investigation of the spatial variation of radon in soil, Comput. Geosci., 27, 939-957 (2001)
[27] Pettitt, A. N.; McBratney, A. B., Sampling designs for estimating spatial variance components, J. Appl. Statist., 42, 185-209 (1993) · Zbl 0825.86019
[28] Ritter, K., Asymptotic optimality of regular sequence designs, Ann. Statist., 24, 2081-2096 (1996) · Zbl 0905.62077
[29] Russo, D., Design of an optimal sampling network for estimating the variogram, Soil Sci. Soc. Amer. J., 48, 708-716 (1984)
[30] Saetre, P.; Baath, E., Spatial variation and patterns of soil microbial community structure in a mixed spruce-birch stand, Soil Biol. Biochem., 32, 909-917 (2000)
[31] Sebastiani, P.; Settimi, R., First-order optimal designs for non-linear models, J. Statist. Plann. Inference, 74, 177-192 (1998) · Zbl 0924.62081
[32] Stein, M. L., Interpolation of Spatial DataSome Theory for Kriging (1999), Springer: Springer New York · Zbl 0924.62100
[33] Su, Y.; Cambanis, S., Sampling designs for estimation of a random process, Stochastic Process. Appl., 46, 47-89 (1993) · Zbl 0771.62065
[34] Sweeting, T. J., Uniform asymptotic normality of the maximum likelihood estimator (Corr: V10 p320), Ann. Statist., 8, 1375-1381 (1980) · Zbl 0447.62041
[35] van Groenigen, J. W.; Stein, A., Constrained optimization of spatial sampling using continuous simulated annealing, J. Environ. Quality, 43, 684-691 (1998)
[36] Warrick, A. W.; Myers, D. E., Optimization of sampling locations for variogram calculations, Water Resour. Res., 23, 496-500 (1987)
[37] Yfantis, E. A.; Flatman, G. T.; Behar, J. V., Efficiency of kriging estimation for square triangular, and hexagonal grids, Math. Geol., 19, 183-205 (1987)
[38] Ying, Z., Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process, J. Multivariate Anal., 36, 280-296 (1991) · Zbl 0733.62091
[39] Ying, Z., Maximum likelihood estimation of parameters under a spatial sampling scheme, Ann. Statist., 21, 1567-1590 (1993) · Zbl 0797.62019
[40] Zhang, H., Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics, J. Amer. Statist. Assoc., 99, 465, 250-261 (2004) · Zbl 1089.62538
[41] Zhu, Z., 2002. Optimal Sampling Design and Parameter Estimation of Gaussian Random Fields. Ph.D. Thesis, Department of Statistics, University of Chicago.; Zhu, Z., 2002. Optimal Sampling Design and Parameter Estimation of Gaussian Random Fields. Ph.D. Thesis, Department of Statistics, University of Chicago.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.