×

A fractal eigenvector. (English) Zbl 1491.15012

Summary: The recursively-constructed family of Mandelbrot matrices \(M_n\) for \(n = 1, 2, \dots\) have nonnegative entries (indeed just 0 and 1, so each \(M_n\) can be called a binary matrix) and have eigenvalues whose negatives \(- \lambda=c\) give periodic orbits under the Mandelbrot iteration, namely \(z_k=z^2_{k-1}+c\) with \(z_0=0\), and are thus contained in the Mandelbrot set. By the Perron-Frobenius theorem, the matrices \(M_n\) have a dominant real positive eigenvalue, which we call \(\rho_n\). This article examines the eigenvector belonging to that dominant eigenvalue and its fractal-like structure, and similarly examines (with less success) the dominant singular vectors of \(M_n\) from the singular value decomposition.

MSC:

15A18 Eigenvalues, singular values, and eigenvectors
37F46 Bifurcations; parameter spaces in holomorphic dynamics; the Mandelbrot and Multibrot sets
28A80 Fractals

References:

[1] Bini, D. A.; Fiorentino, G., Design, analysis, and implementation of a multiprecision polynomial rootfinder, Numer. Algorithms, 23, 2, 127-173 (2000) · Zbl 1018.65061 · doi:10.1023/A:1019199917103
[2] Bini, D. A.; Robol, L., Solving secular and polynomial equations: A multiprecision algorithm, J. Comput. Appl. Math, 272, 276-292 (2014) · Zbl 1310.65052 · doi:10.1016/j.cam.2013.04.037
[3] Boyd, J. P., Solving Transcendental Equations: The Chebyshev Polynomial Proxy and Other Numerical Rootfinders, Perturbation Series, and Oracles (2014), Philadelphia, PA: SIAM, Philadelphia, PA · Zbl 1311.65047
[4] Calkin, N.; Chan, E.; Corless, R., Some facts and conjectures about Mandelbrot polynomials, Maple Transactions, 1, 1 (2021) · doi:10.5206/mt.v1i1.14037
[5] Chan, E. Y. S., A comparison of solution methods for Mandelbrot-like polynomials (2016)
[6] Chan, E. Y. S.; Corless, R. M.; Gonzalez-Vega, L.; Sendra, J. R.; Sendra, J., Algebraic linearizations of matrix polynomials, Linear Algebra Appl, 563, 373-399 (2019) · Zbl 1433.15018 · doi:10.1016/j.laa.2018.10.028
[7] Corless, R. M.; Lawrence, P. W.; Bailey, D. H.; Bauschke, H. H.; Borwein, P.; Garvan, F.; Théra, M.; Vanderwerff, J. D.; Wolkowicz, H., Computational and Analytical Mathematics, The largest roots of the Mandelbrot polynomials, 305-324 (2013), New York, NY: Springer, New York, NY · Zbl 1280.37040
[8] Davis, T. A., Algorithm 1000: Suitesparse:graphblas: Graph algorithms in the language of sparse linear algebra, ACM Trans. Math. Software, 45, 4, 1-25 (2019) · Zbl 1486.65044 · doi:10.1145/3322125
[9] Dietzenbacher, E., Perturbations of matrices: A theorem on the Perron vector and its applications to input-output models, J. Economics, 48, 4, 389-412 (1988) · Zbl 0677.90015 · doi:10.1007/BF01227544
[10] Eidelman, Y.; Gohberg, I.; Olshevsky, V., Eigenstructure of order-one-quasiseparable matrices. three-term and two-term recurrence relations, Linear Algebra Appl, 405, 1-40 (2005) · Zbl 1079.65037 · doi:10.1016/j.laa.2005.02.039
[11] Greenbaum, A.; Li, R.-C.; Overton, M. L., First-order perturbation theory for eigenvalues and eigenvectors, SIAM Rev, 62, 2, 463-482 (2020) · Zbl 1516.15006 · doi:10.1137/19M124784X
[12] Hogben, L., Handbook of Linear Algebra (2014), Boca Raton, FL: Taylor & Francis Group, Boca Raton, FL · Zbl 1284.15001
[13] MacCluer, C. R., The many proofs and applications of Perron’s theorem, SIAM Rev, 42, 3, 487-498 (2000) · Zbl 0959.15022 · doi:10.1137/S0036144599359449
[14] Morton, P.; Patel, P., The Galois theory of periodic points of polynomial maps, Proc. London Math. Soc. (3), 68, 2, 225-263 (1994) · Zbl 0792.11043 · doi:10.1112/plms/s3-68.2.225
[15] OEIS Foundation Inc, The On-Line Encyclopedia of Integer Sequences (2021), oeis.org
[16] Poincaré, H., Science and Hypothesis (1905), New York, NY: The Walter Scott Publishing Co., Ltd, New York, NY
[17] Robinson, R., Viète’s formula in “A Fractal Eigenvector, Maple Transactions, 1, 2 (2021) · doi:10.5206/mt.v1i2.14367
[18] Schleicher, D., Internal addresses of the Mandelbrot set and Galois groups of polynomials, Arnold Math. J, 3, 1, 1-35 (2017) · Zbl 1381.37053 · doi:10.1007/s40598-016-0042-x
[19] Shampine, L. F.; Corless, R. M., Initial value problems for ODEs in problem solving environments, J. Comput. Appl. Math, 125, 1-2, 31-40 (2000) · Zbl 0971.65062 · doi:10.1016/S0377-0427(00)00456-8
[20] Tyaglov, M., Self-interlacing polynomials, Linear Algebra Appl, 535, 12-34 (2017) · Zbl 1398.12003 · doi:10.1016/j.laa.2017.08.020
[21] Vivaldi, F.; Hatjispyros, S., Galois theory of periodic orbits of rational maps, Nonlinearity, 5, 4, 961-978 (1992) · Zbl 0767.11049 · doi:10.1088/0951-7715/5/4/007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.