×

Finite-volume schemes for shallow-water equations. (English) Zbl 1430.76372

Summary: Shallow-water equations are widely used to model water flow in rivers, lakes, reservoirs, coastal areas, and other situations in which the water depth is much smaller than the horizontal length scale of motion. The classical shallow-water equations, the Saint-Venant system, were originally proposed about 150 years ago and still are used in a variety of applications. For many practical purposes, it is extremely important to have an accurate, efficient and robust numerical solver for the Saint-Venant system and related models. As their solutions are typically non-smooth and even discontinuous, finite-volume schemes are among the most popular tools. In this paper, we review such schemes and focus on one of the simplest (yet highly accurate and robust) methods: central-upwind schemes. These schemes belong to the family of Godunov-type Riemann-problem-solver-free central schemes, but incorporate some upwinding information about the local speeds of propagation, which helps to reduce an excessive amount of numerical diffusion typically present in classical (staggered) non-oscillatory central schemes. Besides the classical one- and two-dimensional Saint-Venant systems, we will consider the shallow-water equations with friction terms, models with moving bottom topography, the two-layer shallow-water system as well as general non-conservative hyperbolic systems.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76-02 Research exposition (monographs, survey articles) pertaining to fluid mechanics

Software:

HLLE; HE-E1GODF; PVM
Full Text: DOI

References:

[1] R.Abgrall (1994), ‘On essentially non-oscillatory schemes on unstructured meshes: Analysis and implementation’, J. Comput. Phys.114, 45-58. · Zbl 0822.65062
[2] R.Abgrall and S.Karni (2009), ‘Two-layer shallow water system: A relaxation approach’, SIAM J. Sci. Comput.31, 1603-1627. · Zbl 1188.76229
[3] P.Arminjon and M.-C.Viallon (1995), ‘Généralisation du schéma de Nessyahu-Tadmor pour une équation hyperbolique à deux dimensions d’espace’, CR Acad. Sci. Paris Sér. I Math.320, 85-88. · Zbl 0831.65091
[4] P.Arminjon, M.-C.Viallon and A.Madrane (1997), ‘A finite volume extension of the Lax-Friedrichs and Nessyahu-Tadmor schemes for conservation laws on unstructured grids’, Internat. J. Comput. Fluid Dyn.9, 1-22. · Zbl 0913.76063
[5] U. M.Ascher, S. J.Ruuth and R. J.Spiteri (1997), ‘Implicit – explicit Runge-Kutta methods for time-dependent partial differential equations’, Appl. Numer. Math.25, 151-167. · Zbl 0896.65061
[6] E.Audusse, F.Bouchut, M.-O.Bristeau, R.Klein and B.Perthame (2004), ‘A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows’, SIAM J. Sci. Comput.25, 2050-2065. · Zbl 1133.65308
[7] A.Beljadid, A.Mohammadian and A.Kurganov (2016), ‘Well-balanced positivity preserving cell-vertex central-upwind scheme for shallow water flows’, Comput. & Fluids136, 193-206. · Zbl 1390.76395
[8] M.Ben-Artzi (1989), ‘The generalized Riemann problem for reactive flows’, J. Comput. Phys.81, 70-101. · Zbl 0668.76080
[9] M.Ben-Artzi and J.Falcovitz (1984), ‘A second-order Godunov-type scheme for compressible fluid dynamics’, J. Comput. Phys.55, 1-32. · Zbl 0535.76070
[10] M.Ben-Artzi and J.Falcovitz (1986), ‘An upwind second-order scheme for compressible duct flows’, SIAM J. Sci. Statist. Comput.7, 744-768. · Zbl 0594.76057
[11] M.Ben-Artzi and J.Falcovitz (2003), Generalized Riemann Problems in Computational Fluid Dynamics, Vol. 11 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press. · Zbl 1017.76001
[12] M.Ben-Artzi, J.Li and G.Warnecke (2006), ‘A direct Eulerian GRP scheme for compressible fluid flows’, J. Comput. Phys.218, 19-43. · Zbl 1158.76375
[13] A.Bernstein, A.Chertock and A.Kurganov (2016), ‘Central-upwind scheme for shallow water equations with discontinuous bottom topography’, Bull. Braz. Math. Soc. (N.S.)47, 91-103. · Zbl 1338.76072
[14] A.Bernstein, A.Chertock, A.Kurganov and T.Wu (2018), ‘Central-upwind scheme for shallow water equations with time-dependent bottom topography’. Preprint. · Zbl 1338.76072
[15] C.Berthon and F.Marche (2008), ‘A positive preserving high order VFRoe scheme for shallow water equations: A class of relaxation schemes’, SIAM J. Sci. Comput.30, 2587-2612. · Zbl 1358.76053
[16] C.Berthon, F.Marche and R.Turpault (2011), ‘An efficient scheme on wet/dry transitions for shallow water equations with friction’, Comput. & Fluids48, 192-201. · Zbl 1271.76178
[17] F.Bianco, G.Puppo and G.Russo (1999), ‘High order central schemes for hyperbolic systems of conservation laws’, SIAM J. Sci. Comput.21, 294-322. · Zbl 0940.65093
[18] A.Bollermann, G.Chen, A.Kurganov and S.Noelle (2013), ‘A well-balanced reconstruction of wet/dry fronts for the shallow water equations’, J. Sci. Comput.56, 267-290. · Zbl 1426.76337
[19] A.Bollermann, S.Noelle and M.Lukáčová-Medvid’ová (2011), ‘Finite volume evolution Galerkin methods for the shallow water equations with dry beds’, Commun. Comput. Phys.10, 371-404. · Zbl 1364.76109
[20] F.Bouchut and T.Morales de Luna (2008), ‘An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment’, M2AN Math. Model. Numer. Anal.42, 683-698. · Zbl 1203.76110
[21] F.Bouchut and V.Zeitlin (2010), ‘A robust well-balanced scheme for multi-layer shallow water equations’, Discrete Contin. Dyn. Syst. Ser. B13, 739-758. · Zbl 1308.76060
[22] S.Bryson, Y.Epshteyn, A.Kurganov and G.Petrova (2011), ‘Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system’, M2AN Math. Model. Numer. Anal.45, 423-446. · Zbl 1267.76068
[23] M. J.Castro Díaz and E. D.Fernández-Nieto (2012), ‘A class of computationally fast first order finite volume solvers: PVM methods’, SIAM J. Sci. Comput.34, A2173-A2196. · Zbl 1253.65167
[24] M. J.Castro Díaz, T.Chacón Rebollo, E. D.Fernández-Nieto and C.Pares (2007), ‘On well-balanced finite volume methods for nonconservative nonhomogeneous hyperbolic systems’, SIAM J. Sci. Comput.29, 1093-1126. · Zbl 1148.65065
[25] M. J.Castro Díaz, Y.Cheng, A.Chertock and A.Kurganov (2014), ‘Solving two-mode shallow water equations using finite volume methods’, Commun. Comput. Phys.16, 1323-1354. · Zbl 1373.76124
[26] M. J.Castro Díaz, A.Kurganov and T.Morales de Luna (2018), ‘Path-conservative central-upwind schemes for nonconservative hyperbolic systems’. Preprint. · Zbl 1418.76034
[27] M. J.Castro, P. G.LeFloch, M. L.Muñoz-Ruiz and C.Parés (2008), ‘Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes’, J. Comput. Phys.227, 8107-8129. · Zbl 1176.76084
[28] M. J.Castro, J.Macías and C.Parés (2001), ‘A <![CDATA \([Q]]\)>-scheme for a class of systems of coupled conservation laws with source term: Application to a two-layer 1-D shallow water system’, M2AN Math. Model. Numer. Anal.35, 107-127. · Zbl 1094.76046
[29] M. J.Castro, J.Macías, C.Parés, J. A.García-Rodríguez and E.Vázquez-Cendón (2004), ‘A two-layer finite volume model for flows through channels with irregular geometry: Computation of maximal exchange solutions: Application to the Strait of Gibraltar’, Commun. Nonlinear Sci. Numer. Simul.9, 241-249. · Zbl 1136.76394
[30] M. J.Castro, A.Pardo, C.Parés and E. F.Toro (2010), ‘On some fast well-balanced first order solvers for nonconservative systems’, Math. Comp.79(271), 1427-1472. · Zbl 1369.65107
[31] M. J.Castro, A.Pardo Milanés and C.Parés (2007), ‘Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique’, Math. Models Methods Appl. Sci.17, 2055-2113. · Zbl 1137.76038
[32] L.Cea and M. E.Vázquez-Cendón (2012), ‘Unstructured finite volume discretisation of bed friction and convective flux in solute transport models linked to the shallow water equations’, J. Comput. Phys.231, 3317-3339. · Zbl 1402.76077
[33] L.Cea, M.Garrido and J.Puertas (2010), ‘Experimental validation of two-dimensional depth-averaged models for forecasting rainfall-runoff from precipitation data in urban areas’, J. Hydrol.382, 88-102.
[34] Y.Cheng and A.Kurganov (2016), ‘Moving-water equilibria preserving central-upwind schemes for the shallow water equations’, Commun. Math. Sci.14, 1643-1663. · Zbl 1349.76317
[35] Y.Cheng, A.Chertock, M.Herty, A.Kurganov and T.Wu (2018), ‘A new approach for designing moving-water equilibria preserving schemes for the shallow water equations’. Preprint. · Zbl 1418.76033
[36] A.Chertock and A.Kurganov (2009), On splitting-based numerical methods for convection – diffusion equations. In Numerical Methods for Balance Laws, Vol. 24 of Quaderni di Matematica, Seconda Università Napoli, Caserta, pp. 303-343. · Zbl 1266.65143
[37] A.Chertock, S.Cui, A.Kurganov and W.Tong (2015a), ‘Steady state and sign preserving semi-implicit Runge-Kutta methods for ODEs with stiff damping term’, SIAM J. Numer. Anal.53, 1987-2008. · Zbl 1327.65128
[38] A.Chertock, S.Cui, A.Kurganov and T.Wu (2015b), ‘Well-balanced positivity preserving central-upwind scheme for the shallow water system with friction terms’, Internat. J. Numer. Meth. Fluids78, 355-383.
[39] A.Chertock, S.Cui, A.Kurganov, Ş. N.Özcan and E.Tadmor (2018), ‘Well-balanced schemes for the Euler equations with gravitation: Conservative formulation using global fluxes’, J. Comput. Phys.358, 36-52. · Zbl 1381.76316
[40] A.Chertock, C. R.Doering, E.Kashdan and A.Kurganov (2010), ‘A fast explicit operator splitting method for passive scalar advection’, J. Sci. Comput.45, 200-214. · Zbl 1203.76126
[41] A.Chertock, E.Kashdan and A.Kurganov (2008), Propagation of diffusing pollutant by a hybrid Eulerian-Lagrangian method. In Hyperbolic Problems: Theory, Numerics, Applications (S.Benzoni-Gavage and D.Serre, eds), Springer, pp. 371-379. · Zbl 1354.76115
[42] A.Chertock, A.Kurganov and G.Petrova (2005), Fast explicit operator splitting method: Application to the polymer system. In Finite Volumes for Complex Applications IV (F.Benkhaldoun, eds), ISTE, pp. 63-72. · Zbl 1374.82033
[43] A.Chertock, A.Kurganov and G.Petrova (2009), ‘Fast explicit operator splitting method for convection – diffusion equations’, Internat. J. Numer. Meth. Fluids59, 309-332. · Zbl 1157.65436
[44] A.Chertock, A.Kurganov, Z.Qu and T.Wu (2013), ‘Three-layer approximation of two-layer shallow water equations’, Math. Model. Anal.18, 675-693. · Zbl 1290.76032
[45] B.Cockburn, C.Johnson, C.-W.Shu and E.Tadmor (1998), Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Vol. 1697 of Lecture Notes in Mathematics, Springer. · Zbl 0904.00047
[46] G.Dal Maso, P. G.LeFloch and F.Murat (1995), ‘Definition and weak stability of nonconservative products’, J. Math. Pures Appl. (9)74, 483-548. · Zbl 0853.35068
[47] H.Darcy (1857), Recherches Expérimentales Relatives au Mouvement de l’Eau dans les Tuyaux, Vol. 1, Mallet-Bachelier.
[48] A. J. C.de Saint-Venant (1871), ‘Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l’introduction des marées dans leur lits’, CR Acad. Sci. Paris73, 147-154. · JFM 03.0482.04
[49] M.Dumbser (2013), ‘A diffuse interface method for complex three-dimensional free surface flows’, Comput. Methods Appl. Mech. Engrg257, 47-64. · Zbl 1286.76099
[50] M.Dumbser, A.Hidalgo and O.Zanotti (2014), ‘High order space – time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems’, Comput. Methods Appl. Mech. Engrg268, 359-387. · Zbl 1295.65088
[51] F. M.Exner (1920), Zur Physik der Dünen, Hölder.
[52] U. S.Fjordholm, S.Mishra and E.Tadmor (2011), ‘Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography’, J. Comput. Phys.230, 5587-5609. · Zbl 1452.35149
[53] A.Flamant (1891), Mécanique Appliquée: Hydraulique, Baudry.
[54] K. O.Friedrichs (1954), ‘Symmetric hyperbolic linear differential equations’, Comm. Pure Appl. Math.7, 345-392. · Zbl 0059.08902
[55] J. M.Gallardo, C.Parés and M.Castro (2007), ‘On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas’, J. Comput. Phys.227, 574-601. · Zbl 1126.76036
[56] T.Gallouët, J.-M.Hérard and N.Seguin (2003), ‘Some approximate Godunov schemes to compute shallow-water equations with topography’, Comput. & Fluids32, 479-513. · Zbl 1084.76540
[57] P.Gauckler (1867), Etudes Théoriques et Pratiques sur l’Ecoulement et le Mouvement des Eaux, Gauthier-Villars.
[58] J.-F.Gerbeau and B.Perthame (2001), ‘Derivation of viscous Saint-Venant system for laminar shallow water: Numerical validation’, Discrete Contin. Dyn. Syst. Ser. B1, 89-102. · Zbl 0997.76023
[59] E.Godlewski and P.-A.Raviart (1996), Numerical Approximation of Hyperbolic Systems of Conservation Laws, Vol. 118 of Applied Mathematical Sciences, Springer. · Zbl 0860.65075
[60] S. K.Godunov (1959), ‘A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics’, Mat. Sb. (N.S.)47(89), 271-306. · Zbl 0171.46204
[61] S.Gottlieb, D.Ketcheson and C.-W.Shu (2011), Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations, World Scientific. · Zbl 1241.65064
[62] S.Gottlieb, C.-W.Shu and E.Tadmor (2001), ‘Strong stability-preserving high-order time discretization methods’, SIAM Rev.43, 89-112. · Zbl 0967.65098
[63] A. J.Grass (1981), Sediment Transport by Waves and Currents, Department of Civil Engineering, University College, London.
[64] J.-L.Guermond and B.Popov (2016), ‘Fast estimation from above of the maximum wave speed in the Riemann problem for the Euler equations’, J. Comput. Phys.321, 908-926. · Zbl 1349.76769
[65] A.Harten (1989), ‘ENO schemes with subcell resolution’, J. Comput. Phys.83, 148-184. · Zbl 0696.65078
[66] A.Harten (1993), Multi-resolution analysis for ENO schemes. In Algorithmic Trends in Computational Fluid Dynamics (M. Y.Hussaini, eds), Springer, pp. 287-302.
[67] A.Harten and S.Osher (1987), ‘Uniformly high-order accurate nonoscillatory schemes, I’, SIAM J. Numer. Anal.24, 279-309. · Zbl 0627.65102
[68] A.Harten, B.Engquist, S.Osher and S. R.Chakravarthy (1987), ‘Uniformly high-order accurate essentially nonoscillatory schemes, III’, J. Comput. Phys.71, 231-303. · Zbl 0652.65067
[69] A.Harten, P.Lax and B.van Leer (1983), ‘On upstream differencing and Godunov-type schemes for hyperbolic conservation laws’, SIAM Rev.25, 35-61. · Zbl 0565.65051
[70] P.Heinrich (1992), ‘Nonlinear water waves generated by submarine and areal landslides’, J. Waterw. Port Coast. Ocean Eng.118, 249-266.
[71] I.Higueras and T.Roldán (2006), Positivity-preserving and entropy-decaying IMEX methods. In Ninth International Conference Zaragoza-Pau on Applied Mathematics and Statistics, Vol. 33 of Monografías del Seminario Matemático García de Galdeano, Prensas de la Universidad Zaragoza, pp. 129-136. · Zbl 1115.65343
[72] I.Higueras, N.Happenhofer, O.Koch and F.Kupka (2014), ‘Optimized strong stability preserving IMEX Runge-Kutta methods’, J. Comput. Appl. Math.272, 116-140. · Zbl 1294.65076
[73] P.Hu, Z.Cao, G.Pender and G.Tan (2012), ‘Numerical modelling of turbidity currents in the Xiaolangdi reservoir, Yellow River, China’, J. Hydrol.464, 41-53.
[74] W.Hundsdorfer and S. J.Ruuth (2007), ‘IMEX extensions of linear multistep methods with general monotonicity and boundedness properties’, J. Comput. Phys.225, 2016-2042. · Zbl 1123.65068
[75] H.Jia and K.Li (2011), ‘A third accurate operator splitting method’, Math. Comput. Modelling53, 387-396. · Zbl 1211.65140
[76] G.-S.Jiang and C.-W.Shu (1996), ‘Efficient implementation of weighted ENO schemes’, J. Comput. Phys.126, 202-228. · Zbl 0877.65065
[77] G.-S.Jiang and E.Tadmor (1998), ‘Nonoscillatory central schemes for multidimensional hyperbolic conservation laws’, SIAM J. Sci. Comput.19, 1892-1917. · Zbl 0914.65095
[78] G.-S.Jiang, D.Levy, C.-T.Lin, S.Osher and E.Tadmor (1998), ‘High-resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic conservation laws’, SIAM J. Numer. Anal.35, 2147-2168. · Zbl 0920.65053
[79] S.Jin (2001), ‘A steady-state capturing method for hyperbolic systems with geometrical source terms’, M2AN Math. Model. Numer. Anal.35, 631-645. · Zbl 1001.35083
[80] R.Kellerhals (1967), ‘Stable channels with gravel-paved beds’, ASCE Journal of the Waterways and Harbors Division93, 63-84.
[81] D.Kröner (1997), Numerical Schemes for Conservation Laws, Wiley-Teubner Series Advances in Numerical Mathematics, Wiley. · Zbl 0872.76001
[82] A.Kurganov (2006), Well-balanced central-upwind scheme for compressible two-phase flows. In European Conference on Computational Fluid Dynamics: ECCOMAS CFD 2006 (P.Wesseling, eds), TU Delft.
[83] A.Kurganov (2016), Central schemes: A powerful black-box solver for nonlinear hyperbolic PDEs. In Handbook of Numerical Methods for Hyperbolic Problems, Vol. 17 of Handbook of Numerical Analysis, Elsevier/North-Holland, pp. 525-548. · Zbl 1352.65001
[84] A.Kurganov and D.Levy (2000), ‘Third-order semi-discrete central scheme for conservation laws and convection – diffusion equations’, SIAM J. Sci. Comput.22, 1461-1488. · Zbl 0979.65077
[85] A.Kurganov and D.Levy (2002), ‘Central-upwind schemes for the Saint-Venant system’, M2AN Math. Model. Numer. Anal.36, 397-425. · Zbl 1137.65398
[86] A.Kurganov and C.-T.Lin (2007), ‘On the reduction of numerical dissipation in central-upwind schemes’, Commun. Comput. Phys.2, 141-163. · Zbl 1164.65455
[87] A.Kurganov and J.Miller (2014), ‘Central-upwind scheme for Savage-Hutter type model of submarine landslides and generated tsunami waves’, Comput. Methods Appl. Math.14, 177-201. · Zbl 1302.76115
[88] A.Kurganov and G.Petrova (2001), ‘A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems’, Numer. Math.88, 683-729. · Zbl 0987.65090
[89] A.Kurganov and G.Petrova (2005), ‘Central-upwind schemes on triangular grids for hyperbolic systems of conservation laws’, Numer. Methods Partial Differ. Equations21, 536-552. · Zbl 1071.65122
[90] A.Kurganov and G.Petrova (2007), ‘A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system’, Commun. Math. Sci.5, 133-160. · Zbl 1226.76008
[91] A.Kurganov and G.Petrova (2009), ‘Central-upwind schemes for two-layer shallow equations’, SIAM J. Sci. Comput.31, 1742-1773. · Zbl 1188.76230
[92] A.Kurganov and E.Tadmor (2000), ‘New high resolution central schemes for nonlinear conservation laws and convection – diffusion equations’, J. Comput. Phys.160, 241-282. · Zbl 0987.65085
[93] A.Kurganov and E.Tadmor (2002), ‘Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers’, Numer. Methods Partial Differ. Equations18, 584-608. · Zbl 1058.76046
[94] A.Kurganov, S.Noelle and G.Petrova (2001), ‘Semi-discrete central-upwind scheme for hyperbolic conservation laws and Hamilton-Jacobi equations’, SIAM J. Sci. Comput.23, 707-740. · Zbl 0998.65091
[95] A.Kurganov, G.Petrova and B.Popov (2007), ‘Adaptive semi-discrete central-upwind schemes for nonconvex hyperbolic conservation laws’, SIAM J. Sci. Comput.29, 2381-2401. · Zbl 1154.65356
[96] A.Kurganov, M.Prugger and T.Wu (2017), ‘Second-order fully discrete central-upwind scheme for two-dimensional hyperbolic systems of conservation laws’, SIAM J. Sci. Comput.39, A947-A965. · Zbl 1364.76117
[97] J. L.Lagrange (1798), Traité de la Résolution des Équations Numériques. Reprinted in Œuvres (1879).
[98] P. D.Lax (1954), ‘Weak solutions of nonlinear hyperbolic equations and their numerical computation’, Comm. Pure Appl. Math.7, 159-193. · Zbl 0055.19404
[99] P. G.LeFloch (2002), Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves, Lectures in Mathematics, ETH Zürich, Birkhäuser. · Zbl 1019.35001
[100] P. G.LeFloch (2004), ‘Graph solutions of nonlinear hyperbolic systems’, J. Hyperbolic Differ. Equations1, 643-689. · Zbl 1071.35078
[101] R. J.LeVeque (1998), ‘Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm’, J. Comput. Phys.146, 346-365. · Zbl 0931.76059
[102] R. J.LeVeque (2002), Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press. · Zbl 1010.65040
[103] D.Levy, G.Puppo and G.Russo (1999), ‘Central WENO schemes for hyperbolic systems of conservation laws’, M2AN Math. Model. Numer. Anal.33, 547-571. · Zbl 0938.65110
[104] D.Levy, G.Puppo and G.Russo (2000), ‘Compact central WENO schemes for multidimensional conservation laws’, SIAM J. Sci. Comput.22, 656-672. · Zbl 0967.65089
[105] D.Levy, G.Puppo and G.Russo (2002), ‘A fourth-order central WENO scheme for multidimensional hyperbolic systems of conservation laws’, SIAM J. Sci. Comput.24, 480-506. · Zbl 1014.65079
[106] J.Li and G.Chen (2006), ‘The generalized Riemann problem method for the shallow water equations with bottom topography’, Internat. J. Numer. Methods Engrg65, 834-862. · Zbl 1178.76249
[107] S.Li and C.Duffy (2011), ‘Fully coupled approach to modeling shallow water flow, sediment transport, and bed evolution in rivers’, Water Resour. Res.47, W03508.
[108] K.-A.Lie and S.Noelle (2003a), ‘An improved quadrature rule for the flux-computation in staggered central difference schemes in multidimensions’, J. Sci. Comput.63, 1539-1560. · Zbl 1024.76030
[109] K.-A.Lie and S.Noelle (2003b), ‘On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws’, SIAM J. Sci. Comput.24, 1157-1174. · Zbl 1038.65078
[110] X.Liu, J.Albright, Y.Epshteyn and A.Kurganov (2018), ‘Well-balanced positivity preserving central-upwind scheme with a novel wet/dry reconstruction on triangular grids for the Saint-Venant system’. Submitted. · Zbl 1416.65295
[111] X.-D.Liu and S.Osher (1996), ‘Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes, I’, SIAM J. Numer. Anal.33, 760-779. · Zbl 0859.65091
[112] X.-D.Liu and E.Tadmor (1998), ‘Third order nonoscillatory central scheme for hyperbolic conservation laws’, Numer. Math.79, 397-425. · Zbl 0906.65093
[113] X.-D.Liu, S.Osher and T.Chan (1994), ‘Weighted essentially non-oscillatory schemes’, J. Comput. Phys.115, 200-212. · Zbl 0811.65076
[114] M.Lukáčová-Medvid’ová, K. W.Morton and G.Warnecke (2004), ‘Finite volume evolution Galerkin methods for hyperbolic systems’, SIAM J. Sci. Comput.26, 1-30. · Zbl 1078.65562
[115] M.Lukáčová-Medvid’ová, S.Noelle and M.Kraft (2007), ‘Well-balanced finite volume evolution Galerkin methods for the shallow water equations’, J. Comput. Phys.221, 122-147. · Zbl 1123.76041
[116] J.Macías, C.Pares and M. J.Castro (1999), ‘Improvement and generalization of a finite element shallow-water solver to multi-layer systems’, Internat. J. Numer. Methods Fluids31, 1037-1059. · Zbl 0969.76045
[117] R.Manning (1891), ‘On the flow of water in open channel and pipes’, Transactions of the Institution of Civil Engineers of Ireland20, 161-207.
[118] G. I.Marchuk (1988), Metody Rasshchepleniya [Splitting Methods] (in Russian), Nauka. · Zbl 0653.65065
[119] G. I.Marchuk (1990), Splitting and alternating direction methods. In Finite Difference Methods, I: Solution of Equations in ℝ^N, Vol. 1 of Handbook of Numerical Analysis, North-Holland, pp. 197-462. · Zbl 0875.65049
[120] J.-M.Masella, I.Faille and T.Gallouët (1999), ‘On an approximate Godunov scheme’, Internat. J. Comput. Fluid Dyn.12, 133-149. · Zbl 0944.76041
[121] M.Mignotte and D.Stefanescu (2002), ‘On an estimation of polynomial roots by Lagrange’. Technical report 025/2002, IRMA Strasbourg. http://hal.archives-ouvertes.fr/hal-00129675/en/
[122] T.Morales de Luna, M. J.Castro Díaz, C.Parés Madroñal and E. D.Fernández Nieto (2009), ‘On a shallow water model for the simulation of turbidity currents’, Commun. Comput. Phys.6, 848-882. · Zbl 1364.76037
[123] M. L.Muñoz-Ruiz and C.Parés (2011), ‘On the convergence and well-balanced property of path-conservative numerical schemes for systems of balance laws’, J. Sci. Comput.48, 274-295. · Zbl 1230.65102
[124] M. L.Muñoz-Ruiz and C.Parés Madroñal (2012), Properties of path-conservative schemes for hyperbolic systems of balance laws. In Hyperbolic Problems: Theory, Numerics and Applications, 2, Vol. 18 of Series in Contemporary Applied Mathematics, World Scientific, pp. 593-600. · Zbl 1306.65245
[125] J.Murillo and P.García-Navarro (2010), ‘An Exner-based coupled model for two-dimensional transient flow over erodible bed’, J. Comput. Phys.229, 8704-8732. · Zbl 1282.76131
[126] H.Nessyahu and E.Tadmor (1990), ‘Nonoscillatory central differencing for hyperbolic conservation laws’, J. Comput. Phys.87, 408-463. · Zbl 0697.65068
[127] S.Noelle, N.Pankratz, G.Puppo and J. R.Natvig (2006), ‘Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows’, J. Comput. Phys.213, 474-499. · Zbl 1088.76037
[128] S.Noelle, Y.Xing and C.-W.Shu (2007), ‘High-order well-balanced finite volume WENO schemes for shallow water equation with moving water’, J. Comput. Phys.226, 29-58. · Zbl 1120.76046
[129] C.Parés (2009), Path-conservative numerical methods for nonconservative hyperbolic systems. In Numerical Methods for Balance Laws, Vol. 24 of Quaderni di Matematica, Seconda Università Napoli, Caserta, pp. 67-121. · Zbl 1266.65148
[130] C.Parés and M.Castro (2004), ‘On the well-balance property of Roe’s method for nonconservative hyperbolic systems: Applications to shallow-water systems’, M2AN Math. Model. Numer. Anal.38, 821-852. · Zbl 1130.76325
[131] L.Pareschi and G.Russo (2001), Implicit – explicit Runge-Kutta schemes for stiff systems of differential equations. In Recent Trends in Numerical Analysis, Vol. 3 of Advances in the Theory of Computational Mathematics, Nova, pp. 269-288. · Zbl 1018.65093
[132] L.Pareschi and G.Russo (2005), ‘Implicit-Explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation’, J. Sci. Comput.25, 129-155. · Zbl 1203.65111
[133] B.Perthame and C.Simeoni (2001), ‘A kinetic scheme for the Saint-Venant system with a source term’, Calcolo38, 201-231. · Zbl 1008.65066
[134] D.Pritchard and A.Hogg (2002), ‘On sediment transport under dam-break flow’, J. Fluid Mech.473, 265-274. · Zbl 1026.76057
[135] M.Ricchiuto (2015), ‘An explicit residual based approach for shallow water flows’, J. Comput. Phys.280, 306-344. · Zbl 1349.76035
[136] M.Ricchiuto and A.Bollermann (2009), ‘Stabilized residual distribution for shallow water simulations’, J. Comput. Phys.228, 1071-1115. · Zbl 1330.76097
[137] R. D.Richtmyer and K. W.Morton (1994), Difference Methods for Initial-Value Problems, second edition, Robert E. Krieger. · Zbl 0824.65084
[138] P. L.Roe (1981), ‘Approximate Riemann solvers, parameter vectors, and difference schemes’, J. Comput. Phys.43, 357-372. · Zbl 0474.65066
[139] V. V.Rusanov (1961), ‘The calculation of the interaction of non-stationary shock waves with barriers’, Ž. Vyčisl. Mat. i Mat. Fiz.1, 267-279.
[140] G.Russo (2005), Central schemes for conservation laws with application to shallow water equations. In Trends and Applications of Mathematics to Mechanics (S.Rionero and G.Romano, eds), Springer, pp. 225-246.
[141] G.Russo and A.Khe (2010), High order well-balanced schemes based on numerical reconstruction of the equilibrium variables. In WASCOM 2009: 15th Conference on Waves and Stability in Continuous Media, World Scientific, pp. 230-241. · Zbl 1242.65179
[142] J. B.Schijf and J. C.Schonfeld (1953), Theoretical considerations on the motion of salt and fresh water. In Minnesota International Hydraulics Convention, pp. 321-333.
[143] J.Shi, C.Hu and C.-W.Shu (2002), ‘A technique of treating negative weights in WENO schemes’, J. Comput. Phys.175, 108-127. · Zbl 0992.65094
[144] H.Shirkhani, A.Mohammadian, O.Seidou and A.Kurganov (2016), ‘A well-balanced positivity-preserving central-upwind scheme for shallow water equations on unstructured quadrilateral grids’, Comput. & Fluids126, 25-40. · Zbl 1390.76516
[145] C.-W.Shu (1988), ‘Total-variation-diminishing time discretizations’, SIAM J. Sci. Comput.6, 1073-1084. · Zbl 0662.65081
[146] C.-W.Shu (2003), ‘High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD’, Internat. J. Comput. Fluid Dyn.17, 107-118. · Zbl 1034.76044
[147] C.-W.Shu (2009), ‘High order weighted essentially nonoscillatory schemes for convection dominated problems’, SIAM Rev.51, 82-126. · Zbl 1160.65330
[148] C.-W.Shu and S.Osher (1988), ‘Efficient implementation of essentially non-oscillatory shock-capturing schemes’, J. Comput. Phys.77, 439-471. · Zbl 0653.65072
[149] G.Simpson and S.Castelltort (2006), ‘Coupled model of surface water flow, sediment transport and morphological evolution’, Comput. Geosci.32, 1600-1614.
[150] L.Song, J.Zhou, J.Guo, Q.Zou and Y.Liu (2011), ‘A robust well-balanced finite volume model for shallow water flows with wetting and drying over irregular terrain’, Adv. Water Resour.34, 915-932.
[151] G.Strang (1968), ‘On the construction and comparison of difference schemes’, SIAM J. Numer. Anal.5, 506-517. · Zbl 0184.38503
[152] P. K.Sweby (1984), ‘High resolution schemes using flux limiters for hyperbolic conservation laws’, SIAM J. Numer. Anal.21, 995-1011. · Zbl 0565.65048
[153] H.Tang, T.Tang and K.Xu (2004), ‘A gas-kinetic scheme for shallow-water equations with source terms’, Z. Angew. Math. Phys.55, 365-382. · Zbl 1142.76457
[154] T.Tingsanchali and C.Chinnarasri (2001), ‘Numerical modelling of dam failure due to flow overtopping’, Hydrolog. Sci. J.46, 113-130.
[155] E. F.Toro (2009), Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, third edition, Springer. · Zbl 1227.76006
[156] P. N.Vabishchevich (2014), Additive Operator-Difference Schemes: Splitting Schemes, De Gruyter. · Zbl 1286.65105
[157] B.van Leer (1979), ‘Towards the ultimate conservative difference scheme, V: A second-order sequel to Godunov’s method’, J. Comput. Phys.32, 101-136. · Zbl 1364.65223
[158] P.Watts (2000), ‘Tsunami features of solid block underwater landslides’, J. Waterw. Port Coast. Ocean Eng.126, 144-152.
[159] W.Wu and S. S.Wang (2007), ‘One-dimensional modeling of dam-break flow over movable beds’, J. Hydraul. Eng.133, 48-58.
[160] J.Xia, B.Lin, R.Falconer and G.Wang (2010), ‘Modelling dam-break flows over mobile beds using a 2D coupled approach’, Adv. Water Resour.33, 171-183.
[161] Y.Xing, C.-W.Shu and S.Noelle (2011), ‘On the advantage of well-balanced schemes for moving-water equilibria of the shallow water equations’, J. Sci. Comput.48, 339-349. · Zbl 1409.76086
[162] T.Xiong, C.-W.Shu and M.Zhang (2012), ‘WENO scheme with subcell resolution for computing nonconservative Euler equations with applications to one-dimensional compressible two-medium flows’, J. Sci. Comput.53, 222-247. · Zbl 1383.76359
[163] Z.Yue, Z.Cao, X.Li and T.Che (2008), ‘Two-dimensional coupled mathematical modeling of fluvial processes with intense sediment transport and rapid bed evolution’, Sci. China Ser. G: Phys. Mech. Astron.51, 1427-1438. · Zbl 1160.86309
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.