×

Effect of magnetic field and hydrodynamic slippage on electro-osmotic Brinkman flow through patterned zeta potential microchannel. (English) Zbl 07902681

Summary: An analytical investigation is conducted to analyze the impact of magnetic field and hydrodynamic slippage on two-dimensional electro-osmotic Brinkman flow in a microchannel with cosine surface zeta potential. The Brinkman equation is utilized to govern the fluid flow within a fully saturated, homogeneous, and isotropic porous medium. We consider a very small magnetic Reynolds number to eliminate the induced magnetic field equation. The Navier slip boundary condition is applied to assess the impact of hydrodynamic slippage. We utilize the Debye-Huckel length approximation to linearize the Poisson-Boltzmann equation, which governs the potential of the electrical double layer. The stream function is obtained analytically, and contour plots, velocity fields, shear stresses, and pressure gradients are assessed to gain a proper understanding of flow physics. We utilize the stream function to plot the streamline plots for distinct assumed flow parameters. We observed that for a fixed Darcy number, the intensity of flow vortices decreases with increasing Hartman number while increasing with increasing slip length. Further, altering the wave number in the assumed cosine-waved zeta potential causes asymmetrical recirculations in the flow, which helps in increasing the scalar mixing process in microdevices. Further, the proposed investigation has various crucial applications, such as microfluidic cooling systems, drug delivery systems, and so on.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76S05 Flows in porous media; filtration; seepage
Full Text: DOI

References:

[1] Rothstein, JP, Slip on superhydrophobic surfaces, Annu Rev Fluid Mech, 42, 89-109, 2010 · doi:10.1146/annurev-fluid-121108-145558
[2] Ribau, AM, A study on mixed electro-osmotic/pressure-driven microchannel flows of a generalised Phan-Thien-Tanner fluid, J Eng Math, 127, 1, 1-15, 2021 · Zbl 1497.35390 · doi:10.1007/s10665-020-10071-6
[3] Li, P.; Huang, X.; Zhao, YP, Active control of electro-visco-fingering in Hele-Shaw cells using Maxwell stress, iScience, 25, 10, 2022 · doi:10.1016/j.isci.2022.105204
[4] Yossifon, G.; Frankel, I.; Miloh, T., On electro-osmotic flows through microchannel junctions, Phys Fluids, 18, 11, 2391701, 2006 · Zbl 1146.76576 · doi:10.1063/1.2391701
[5] Bhattacharyya, S.; Bag, N., Enhanced electroosmotic flow through a nanochannel patterned with transverse periodic grooves, J Fluids Eng Trans ASME, 139, 8, 4036265, 2017 · doi:10.1115/1.4036265
[6] Jian, Y.; Yang, L.; Liu, Q., Time periodic electro-osmotic flow through a microannulus, Phys Fluids, 22, 4, 1-9, 2010 · Zbl 1188.76065 · doi:10.1063/1.3358473
[7] Sadr, R.; Yoda, M.; Zheng, Z.; Conlisk, AT, An experimental study of electro-osmotic flow in rectangular microchannels, J Fluid Mech, 506, 357-367, 2004 · Zbl 1072.76510 · doi:10.1017/S0022112004008626
[8] Vainshtein, P.; Gutfinger, C., On electroviscous effects in microchannels, J Micromech Microeng, 12, 3, 252-256, 2002 · doi:10.1088/0960-1317/12/3/309
[9] Brask, A.; Goranović, G.; Jensen, MJ; Bruus, H., A novel electro-osmotic pump design for nonconducting liquids: theoretical analysis of flow rate-pressure characteristics and stability, J Micromech Microeng, 15, 4, 883-891, 2005 · doi:10.1088/0960-1317/15/4/029
[10] Chan, WK; Yang, C., Surface-tension-driven liquid-liquid displacement in a capillary, J Micromech Microeng, 15, 9, 1722-1728, 2005 · doi:10.1088/0960-1317/15/9/014
[11] Gao, Y.; Wong, TN; Yang, C.; Ooi, KT, Two-fluid electroosmotic flow in microchannels, J Colloid Interface Sci, 284, 1, 306-314, 2005 · doi:10.1016/j.jcis.2004.10.011
[12] Ngoma, GD; Erchiqui, F., Pressure gradient and electroosmotic effects on two immiscible fluids in a microchannel between two parallel plates, J Micromech Microeng, 16, 1, 83-91, 2006 · doi:10.1088/0960-1317/16/1/012
[13] Thamida, SK; Chang, HC, Nonlinear electrokinetic ejection and entrainment due to polarization at nearly insulated wedges, Phys Fluids, 14, 12, 4315-4328, 2002 · Zbl 1185.76365 · doi:10.1063/1.1519530
[14] Takhistov, P.; Duginova, K.; Chang, HC, Electrokinetic mixing vortices due to electrolyte depletion at microchannel junctions, J Colloid Interface Sci, 263, 1, 133-143, 2003 · doi:10.1016/S0021-9797(03)00282-0
[15] Plohl, O.; Zemljič, LF; Potrč, S.; Luxbacher, T., Applicability of electro-osmotic flow for the analysis of the surface zeta potential, RSC Adv, 10, 12, 6777-6789, 2020 · doi:10.1039/c9ra10414c
[16] Yang, J.; Masliyah, JH; Kwok, DY, Streaming potential and electroosmotic flow in heterogeneous circular microchannels with nonuniform zeta potentials: requirements of flow rate and current continuities, Langmuir, 20, 10, 3863-3871, 2004 · doi:10.1021/la035243u
[17] Ng, CO; Zhou, Q., Electro-osmotic flow through a thin channel with gradually varying wall potential and hydrodynamic slippage, Fluid Dyn Res, 44, 5, 1-21, 2012 · Zbl 1431.76150 · doi:10.1088/0169-5983/44/5/055507
[18] Datta, S.; Choudhary, JN, Effect of hydrodynamic slippage on electro-osmotic flow in zeta potential patterned nanochannels, Fluid Dyn Res, 45, 5, 2013 · Zbl 1456.76147 · doi:10.1088/0169-5983/45/5/055502
[19] Stroock, AD, Patterning electro-osmotic flow with patterned surface charge, Phys Rev Lett, 84, 15, 3314-3317, 2000 · doi:10.1103/PhysRevLett.84.3314
[20] Ajdari, A., Electro-osmosis on inhomogeneously charged surfaces, Phys Rev Lett, 75, 4, 755-758, 1995 · doi:10.1103/PhysRevLett.75.755
[21] Banerjee, A.; Nayak, AK, Influence of varying zeta potential on non-Newtonian flow mixing in a wavy patterned microchannel, J Nonnewton Fluid Mech, 269, 17-27, 2019 · doi:10.1016/j.jnnfm.2019.05.007
[22] Afonso, AM; Alves, MA; Pinho, FT, Electro-osmotic flow of viscoelastic fluids in microchannels under asymmetric zeta potentials, J Eng Math, 71, 1, 15-30, 2011 · Zbl 1254.76168 · doi:10.1007/s10665-010-9421-9
[23] Choi, C-H; Ulmanella, U.; Kim, J.; Ho, C-M; Kim, C-J, Effective slip and friction reduction in nanograted superhydrophobic microchannels, Phys Fluids, 18, 8, 2337669, 2006 · doi:10.1063/1.2337669
[24] Das, S.; Chakraborty, S., Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid, Anal Chim Acta, 559, 1, 15-24, 2006 · doi:10.1016/j.aca.2005.11.046
[25] Akhtar, S.; Jamil, S.; Shah, NA; Chung, JD; Tufail, R., Effect of zeta potential in fractional pulsatile electroosmotic flow of Maxwell fluid, Chin J Phys, 76, 59-67, 2022 · Zbl 07840803 · doi:10.1016/j.cjph.2021.12.032
[26] Peralta, M.; Bautista, O.; Méndez, F.; Bautista, E., Pulsatile electroosmotic flow of a Maxwell fluid in a parallel flat plate microchannel with asymmetric zeta potentials, Appl Math Mech, 39, 5, 667-684, 2018 · doi:10.1007/s10483-018-2328-6
[27] Pabi, S.; Mehta, SK; Pati, S., Analysis of thermal transport and entropy generation characteristics for electroosmotic flow through a hydrophobic microchannel considering viscoelectric effect, Int Commun Heat Mass Transf, 127, 2021 · doi:10.1016/j.icheatmasstransfer.2021.105519
[28] Vasista, KN; Mehta, SK; Pati, S.; Sarkar, S., Electroosmotic flow of viscoelastic fluid through a microchannel with slip-dependent zeta potential, Phys Fluids, 33, 12, 0073367, 2021 · doi:10.1063/5.0073367
[29] Joly, L.; Ybert, C.; Trizac, E.; Bocquet, L., Liquid friction on charged surfaces: From hydrodynamic slippage to electrokinetics, J Chem Phys, 125, 20, 2397677, 2006 · doi:10.1063/1.2397677
[30] Cottin-Bizonne, C.; Cross, B.; Steinberger, A.; Charlaix, E., Boundary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts, Phys Rev Lett, 94, 5, 1-4, 2005 · doi:10.1103/PhysRevLett.94.056102
[31] Azari, M.; Sadeghi, A.; Chakraborty, S., Electroosmotic flow and heat transfer in a heterogeneous circular microchannel, Appl Math Model, 87, 640-654, 2020 · Zbl 1481.76283 · doi:10.1016/j.apm.2020.06.022
[32] Nath, AJ; Roy, P.; Banerjee, D.; Pati, S.; Randive, PR; Biswas, P., Analytical solution to time-periodic electro-osmotic flow of generalized Maxwell fluids in parallel plate microchannel with slip-dependent zeta potential, J Fluids Eng Trans ASME, 145, 1, 1-5, 2023 · doi:10.1115/1.4055782
[33] Tripathi, D.; Bhushan, S.; Beg, OA, Electro-osmotic flow in a microchannel containing a porous medium with complex wavy walls, J Porous Med, 23, 5, 477-495, 2020 · doi:10.1615/JPorMedia.2020026114
[34] Silkina, EF; Bag, N.; Vinogradova, OI, Electro-osmotic properties of porous permeable films, Phys Rev Fluids, 5, 12, 1-12, 2020 · doi:10.1103/PhysRevFluids.5.123701
[35] Yadav, A.; Bhushan, S.; Tripathi, D., Peristaltic pumping through porous medium in presence of electric double layer, MATEC Web Conf, 192, 1-4, 2018 · doi:10.1051/matecconf/201819202043
[36] Adil, M.; Pasha, AA; Nazeer, M.; Hussain, F., Electro osmotically flow of fourth-grade fluid in complex channel with porous medium and lubricated walls: applications in petroleum industry, Waves Random Complex Med, 2023 · doi:10.1080/17455030.2023.2176697
[37] Di Fraia, S.; Massarotti, N.; Nithiarasu, P., Modelling electro-osmotic flow in porous media: a review, Int J Numer Methods Heat Fluid Flow, 28, 2, 472-497, 2018 · doi:10.1108/hff-11-2016-0437
[38] Mirzadeh, M.; Zhou, T.; Amooie, MA; Fraggedakis, D.; Ferguson, TR; Bazant, MZ, Vortices of electro-osmotic flow in heterogeneous porous media, Phys Rev Fluids, 5, 10, 2020 · doi:10.1103/PhysRevFluids.5.103701
[39] Kumar, A.; De, S., Effect of AC electric field in mass transport of a neutral solute in a microtube with porous wall, Chem Eng Sci, 288, 2024 · doi:10.1016/j.ces.2024.119832
[40] Bhardwaj, A.; Kumar, A.; Bhandari, DS; Tripathi, D., Alteration in electroosmotic flow of couple stress fluids through membrane based microchannel, Sens Actuators A, 366, 2024 · doi:10.1016/j.sna.2023.114956
[41] Dash, DN; Arjun, KS; Thatoi, DN; Ali, R.; Nayak, MK; Chamkha, AJ, Flow and heat transfer of nanofluids in a cylindrical permeable wavy channel embedded in porous medium using Buongiorno’s model, Mod Phys Lett B, 2024 · doi:10.1142/S0217984924501574
[42] Suárez-Grau, FJ, Mathematical modeling of micropolar fluid flows through a thin porous medium, J Eng Math, 126, 1, 1-25, 2021 · Zbl 1497.35391 · doi:10.1007/s10665-020-10075-2
[43] Chakraborty, S.; Paul, D., Microchannel flow control through a combined electromagnetohydrodynamic transport, J Phys D, 39, 24, 5364-5371, 2006 · doi:10.1088/0022-3727/39/24/038
[44] Saghafian, M.; Seyedzadeh, H.; Moradmand, A., Numerical simulation of electroosmotic flow in a rectangular microchannel with use of magnetic and electric fields, Sci Iran, 2023 · doi:10.24200/sci.2023.58474.5742
[45] Lee, D.; Choi, H., Magnethodrodynamic turbulent flow in a channel at low magnetic reynolds number, J Fluid Mech, 439, 367-394, 2001 · Zbl 1008.76100 · doi:10.1017/S0022112001004621
[46] Yadav, PK; Jaiswal, S., Influence of an inclined magnetic field on the Poiseuille flow of immiscible micropolar-Newtonian fluids in a porous medium, Can J Phys, 96, 9, 1016-1028, 2018 · doi:10.1139/cjp-2017-0998
[47] Baños, R.; Arcos, J.; Bautista, O.; Méndez, F., Slippage effect on the oscillatory electroosmotic flow of power-law fluids in a microchannel, Defect Diffus Forum, 399, 92-101, 2020 · doi:10.4028/www.scientific.net/DDF.399.92
[48] Ahmadi, E.; Cortez, R.; Fujioka, H., Boundary integral formulation for flows containing an interface between two porous media, J Fluid Mech, 816, 71-93, 2017 · Zbl 1383.76360 · doi:10.1017/jfm.2017.42
[49] Chhabra, V.; Nishad, CS; Sahni, M., Effect of magnetic field on viscous flow through composite porous channel using boundary element method, J Appl Comput Mech, 9, 4, 1016-1035, 2023 · doi:10.22055/jacm.2023.43024.4006
[50] Ansari, IA; Deo, S., Effect of magnetic field on the two immiscible viscous fluids flow in a channel filled with porous medium, Natl Acad Sci Lett, 40, 3, 211-214, 2017 · doi:10.1007/s40009-017-0551-8
[51] Tezduyar, TE; Liou, J.; Ganjoo, DK, Incompressible flow computations based on the vorticity-stream function and velocity-pressure formulations, Comput Struct, 35, 4, 445-472, 1990 · Zbl 0719.76051 · doi:10.1016/0045-7949(90)90069-E
[52] Claude C, Louis Louis Navier Navier, Darve C (1823) Memoire sur Memoire sur les les lois du lois du mouvement mouvement des des fluides fluids. Mem Acad Sci Inst Fr 6:389-440
[53] Ghosal, S., Lubrication theory for electro-osmotic flow in a microfluidic channel of slowly varying cross-section and wall charge, J Fluid Mech, 459, 103-128, 2002 · Zbl 1010.76024 · doi:10.1017/S0022112002007899
[54] Van Dyke, M., Slow variations in continuum mechanics, Adv Appl Mech, 25, 1-45, 1987 · Zbl 0709.73008 · doi:10.1016/S0065-2156(08)70276-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.