×

Posterior contraction and testing for multivariate isotonic regression. (English) Zbl 07662462

The aim of this paper is to generalize the testing results of M. Chakraborty and S. Ghosal [Electron. J. Stat. 15, No. 1, 3478–3503 (2021; Zbl 1472.62106)] from unidimensional to multidimensional predictors. Using the projection technique a Bayesian approach to multivariate monotone regression is considered. It is shown that the resulting induced posterior supported on block-wise constant multivariate monotone function contracts at the optimal rate with respect to an \(\mathbb L_1\)-metric. A new \(\mathbb L_1\)-approximation property for multivariate monotonic functions by piecewise constant function is obtained, and a test for multivariate monotonicity based on the posterior probability of a slight enlargement of the set of multivariate monotone functions is constructed. Also it is shown that the resulting Bayesian test is universally consistent in that the size of the test goes to zero, and the power goes to one at any fixed alternative, as the sample size increases to infinity. The paper is organized in five sections and an appendix. After a presentation of the topic in the first section of the paper, in the second section three assumptions are given and the prior distribution and the projection-posterior approach are described. The main results are presented in in the third section, and in the fourth section simulation study is given to verify the proposed estimation and testing procedure. The proofs of the main theorems are given in the fifth section of the paper, and in Appendix some auxiliary results are presented.

MSC:

62G10 Nonparametric hypothesis testing
62G20 Asymptotic properties of nonparametric inference
62F15 Bayesian inference

Citations:

Zbl 1472.62106

Software:

mBART; coneproj; isotone

References:

[1] Akakpo, N., Balabdaoui, F. and Durot, C. (2014). Testing monotonicity via local least concave majorants. Bernoulli 20 514-544. · Zbl 1400.62090 · doi:10.3150/12-BEJ496
[2] BARLOW, R. E., BARTHOLOMEW, D. J., BREMNER, J. M. and BRUNK, H. D. (1972). Statistical Inference under Order Restrictions. The Theory and Application of Isotonic Regression. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, London-New York-Sydney. · Zbl 0246.62038
[3] Bellec, P. C. (2018). Sharp oracle inequalities for least squares estimators in shape restricted regression. Ann. Statist. 46 745-780. · Zbl 1408.62066 · doi:10.1214/17-AOS1566
[4] Brunk, H. D. (1970). Estimation of isotonic regression. In Nonparametric Techniques in Statistical Inference (Proc. Sympos., Indiana Univ., Bloomington, Ind., 1969) 177-197. Cambridge Univ. Press, London.
[5] CHAKRABORTY, M. and GHOSAL, S. (2021). Convergence rates for Bayesian estimation and testing in monotone regression. Electron. J. Stat. 15 3478-3503. · Zbl 1472.62106 · doi:10.1214/21-ejs1861
[6] Chakraborty, M. and Ghosal, S. (2021). Coverage of credible intervals in nonparametric monotone regression. Ann. Statist. 49 1011-1028. · Zbl 1469.62232
[7] CHAKRABORTY, M. and GHOSAL, S. (2022). Rates and coverage in Bayesian inference for monotone densities. Bernoulli 23 1093-1019.
[8] Chatterjee, S., Guntuboyina, A. and Sen, B. (2018). On matrix estimation under monotonicity constraints. Bernoulli 24 1072-1100. · Zbl 1419.62135 · doi:10.3150/16-BEJ865
[9] CHIPMAN, H. A., GEORGE, E. I., MCCULLOCH, R. E. and SHIVELY, T. S. (2022). mBART: multidimensional monotone BART. Bayesian Anal. 17 515-544. · Zbl 1531.62023 · doi:10.1214/21-ba1259
[10] DE LEEUW, J., HORNIK, K. and MAIR, P. (2009). Isotone optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and active set methods. J. Statist. Software 32 1-24.
[11] Deng, H. and Zhang, C.-H. (2020). Isotonic regression in multi-dimensional spaces and graphs. Ann. Statist. 48 3672-3698. · Zbl 1462.62208 · doi:10.1214/20-AOS1947
[12] DUROT, C. (2007). On the \[{\mathbb{L}_p} \]-error of monotonicity constrained estimators. Ann. Statist. 35 1080-1104. · Zbl 1129.62024 · doi:10.1214/009053606000001497
[13] DUROT, C., KULIKOV, V. N. and LOPUHAÄ, H. P. (2012). The limit distribution of the \[{L_{\infty }}\]-error of Grenander-type estimators. Ann. Statist. 40 1578-1608. · Zbl 1257.62017 · doi:10.1214/12-AOS1015
[14] DYKSTRA, R. L. and ROBERTSON, T. (1982). An algorithm for isotonic regression for two or more independent variables. Ann. Statist. 10 708-716. · Zbl 0485.65099
[15] FOKIANOS, K., LEUCHT, A. and NEUMANN, M. H. (2020). On integrated \[{L^1}\] convergence rate of an isotonic regression estimator for multivariate observations. IEEE Trans. Inform. Theory 66 6389-6402. · Zbl 1452.62282 · doi:10.1109/TIT.2020.3013390
[16] Ghosal, S., Sen, A. and van der Vaart, A. W. (2000). Testing monotonicity of regression. Ann. Statist. 28 1054-1082. · Zbl 1105.62337 · doi:10.1214/aos/1015956707
[17] Ghosal, S. and van der Vaart, A. (2017). Fundamentals of Nonparametric Bayesian Inference. Cambridge Series in Statistical and Probabilistic Mathematics 44. Cambridge University Press, Cambridge. · Zbl 1376.62004 · doi:10.1017/9781139029834
[18] GRENANDER, U. (1956). On the theory of mortality measurement. II. Skand. Aktuarietidskr. 39 125-153 (1957). · Zbl 0077.33715 · doi:10.1080/03461238.1956.10414944
[19] GROENEBOOM, P. (1985). Estimating a monotone density. In Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, Vol. II (Berkeley, Calif., 1983), 539-555. Wadsworth Statist./Probab. Ser., Wadsworth, Belmont, CA. · Zbl 1373.62144
[20] Groeneboom, P. (1989). Brownian motion with a parabolic drift and Airy functions. Probab. Theory Related Fields 81 79-109. · doi:10.1007/BF00343738
[21] Hall, P. and Heckman, N. E. (2000). Testing for monotonicity of a regression mean by calibrating for linear functions. Ann. Statist. 28 20-39. · Zbl 1106.62324 · doi:10.1214/aos/1016120363
[22] HAN, Q. (2021). Set structured global empirical risk minimizers are rate optimal in general dimensions. Ann. Statist. 49 2642-2671. · Zbl 1478.62081 · doi:10.1214/21-aos2049
[23] Han, Q., Wang, T., Chatterjee, S. and Samworth, R. J. (2019). Isotonic regression in general dimensions. Ann. Statist. 47 2440-2471. · Zbl 1437.62124 · doi:10.1214/18-AOS1753
[24] Han, Q. and Zhang, C.-H. (2020). Limit distribution theory for block estimators in multiple isotonic regression. Ann. Statist. 48 3251-3282. · Zbl 1466.62257 · doi:10.1214/19-AOS1928
[25] KULIKOV, V. N. and LOPUHAÄ, H. P. (2005). Asymptotic normality of the \[{L_k}\]-error of the Grenander estimator. Ann. Statist. 33 2228-2255. · Zbl 1086.62063 · doi:10.1214/009053605000000462
[26] Lin, L. and Dunson, D. B. (2014). Bayesian monotone regression using Gaussian process projection. Biometrika 101 303-317. · Zbl 1452.62285 · doi:10.1093/biomet/ast063
[27] LUSS, R. and ROSSET, S. (2014). Generalized isotonic regression. J. Comput. Graph. Statist. 23 192-210. · doi:10.1080/10618600.2012.741550
[28] MEYER, M. C. (2013). A simple new algorithm for quadratic programming with applications in statistics. Comm. Statist. Simulation Comput. 42 1126-1139. · Zbl 1347.62013 · doi:10.1080/03610918.2012.659820
[29] Neelon, B. and Dunson, D. B. (2004). Bayesian isotonic regression and trend analysis. Biometrics 60 398-406. · Zbl 1125.62023
[30] PRAKASA RAO, B. L. S. (1969). Estimation of a unimodal density. Sankhy¯a Ser. A 31 23-36. · Zbl 0181.45901
[31] ROBERTSON, T., WRIGHT, F. T. and DYKSTRA, R. L. (1988). Order restricted statistical inference. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Ltd., Chichester. · Zbl 0645.62028
[32] SAARELA, O. and ARJAS, E. (2011). A method for Bayesian monotonic multiple regression. Scand. J. Stat. 38 499-513. · Zbl 1246.62111 · doi:10.1111/j.1467-9469.2010.00716.x
[33] Salomond, J.-B. (2014). Adaptive Bayes test for monotonicity. In The Contribution of Young Researchers to Bayesian Statistics. Springer Proc. Math. Stat. 63 29-33. Springer, Cham. · doi:10.1007/978-3-319-02084-6_7
[34] Scott, J. G., Shively, T. S. and Walker, S. G. (2015). Nonparametric Bayesian testing for monotonicity. Biometrika 102 617-630. · Zbl 1452.62320
[35] SHIVELY, T. S., SAGER, T. W. and WALKER, S. G. (2009). A Bayesian approach to non-parametric monotone function estimation. J. Roy. Stat. Soc. Ser. B Stat. Methodol. 71 159-175. · Zbl 1231.62058 · doi:10.1111/j.1467-9868.2008.00677.x
[36] SPOUGE, J., WAN, H. and WILBUR, W. J. (2003). Least squares isotonic regression in two dimensions. J. Optim. Theory Appl. 117 585-605. · Zbl 1043.90011 · doi:10.1023/A:1023901806339
[37] STOUT, Q. F. (2013). Isotonic regression via partitioning. Algorithmica 66 93-112. · Zbl 1263.05080 · doi:10.1007/s00453-012-9628-4
[38] STOUT, Q. F. (2015). Isotonic regression for multiple independent variables. Algorithmica 71 450-470. · Zbl 1312.62084 · doi:10.1007/s00453-013-9814-z
[39] VAN DER VAART, A. W. and WELLNER, J. A. (1996). Weak Convergence and Empirical Processes. Springer Series in Statistics. Springer-Verlag, New York. With applications to statistics. · Zbl 0862.60002 · doi:10.1007/978-1-4757-2545-2
[40] VITTORIETTI, M., HIDALGO, J., SIETSMA, J., LI, W. and JONGBLOED, G. (2022). Isotonic regression for metallic microstructure data: estimation and testing under order restrictions. J. Appl. Stat. 49 2208-2227. · Zbl 1519.62006 · doi:10.1080/02664763.2021.1896685
[41] WANG, K. and GHOSAL, S. (2022). Coverage of Credible Intervals in Bayesian Multivariate Isotonic Regression. arXiv preprint. · doi:10.48550/ARXIV.2211.12566
[42] WESTLING, T., GILBERT, P. and CARONE, M. (2020). Causal isotonic regression. J. Roy. Stat. Soc. Ser. B. Stat. Methodol. 82 719-747. · Zbl 07554771 · doi:10.1111/rssb.12372
[43] Yoo, W. W. and Ghosal, S. (2016). Supremum norm posterior contraction and credible sets for nonparametric multivariate regression. Ann. Statist. 44 1069-1102. · Zbl 1338.62121 · doi:10.1214/15-AOS1398
[44] Zhang, C.-H. (2002). Risk bounds in isotonic regression. Ann. Statist. 30 528-555. · Zbl 1012.62045 · doi:10.1214/aos/1021379864
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.