×

Shakedown analysis of elastic-plastic structures considering the effect of temperature on yield strength: theory, method and applications. (English) Zbl 1406.74120

Summary: According to the extended Melan’s static theorem, theoretical and numerical aspects of the stress compensation method (SCM) are presented to perform shakedown analysis of elastic-plastic structures considering the effect of temperature on yield strength. Instead of constructing a mathematical programming formulation, this developed method consists of the two-level iterative scheme. The inner loop constructs the statically admissible self-equilibrating stress field, while the outer loop evaluates a sequence of decreasing load factors to approach to the shakedown limit multiplier. The yield strength considering temperature effect is updated based on the current temperature at each outer iteration, and the yield conditions are checked at all Gauss points. The numerical procedure is well incorporated into ABAQUS finite element code and used for calculating the shakedown limits of structures considering yield strengths as different functions of temperature under complex thermomechanical loading system. The method is validated by some plane stress and axisymmetric numerical examples with theoretical and numerical solutions, and subsequently applied to solve the practical shakedown problem of a pipe with oblique nozzle. The results demonstrate that the developed method is stable, accurate and efficient, and can effectively evaluate the shakedown limit of an elastic-plastic structure where the yield strength of material varies with temperature.

MSC:

74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74F05 Thermal effects in solid mechanics

Software:

ABAQUS

References:

[1] Barbera, D.; Chen, H., Creep rupture assessment by a robust creep data interpolation using the Linear Matching Method, Eur. J. Mech. Solid., 54, 267-279 (2015) · Zbl 1406.74571
[2] Barbera, D.; Chen, H.; Liu, Y.; Xuan, F., Recent developments of the linear matching method framework for structural integrity assessment, J. Pressure Vessel Technol., 139, 051101-051109 (2017)
[3] Borino, G., Consistent shakedown theorems for materials with temperature dependent yield functions, Int. J. Solid Struct., 37, 3121-3147 (2000) · Zbl 0992.74017
[4] Bradford, R. A.W.; Ure, J.; Chen, H. F., The Bree problem with different yield stresses on-load and off-load and application to creep ratcheting, Int. J. Pres. Ves. Pip., 113, 32-39 (2014)
[5] Bree, J., Elastic-plastic behaviour of thin tubes subjected to internal pressure and intermittent high-heat fluxes with application to fast-nuclear-reactor fuel elements, J. Strain Anal., 2, 226-238 (1967)
[6] Casciaro, R.; Garcea, G., An iterative method for shakedown analysis, Comput. Meth. Appl. Math., 191, 5761-5792 (2002) · Zbl 1083.74513
[7] Chen, H. F., Lower and upper bound shakedown analysis of structures with temperature-dependent yield stress, J. Press. Vess-T Asme., 132, 273-281 (2010)
[8] Chen, H. F.; Ponter, A. R.S., Shakedown and limit analyses for 3-D structures using the linear matching method, Int. J. Pres. Ves. Pip., 78, 443-451 (2001)
[9] Chen, S. S.; Liu, Y. H.; Li, J.; Cen, Z. Z., Performance of the MLPG method for static shakedown analysis for bounded kinematic hardening structures, Eur. J. Mech. Solid., 30, 183-194 (2011) · Zbl 1261.74034
[10] Chinh, P. D., Shakedown static and kinematic theorems for elastic-plastic limited linear kinematic-hardening solids, Eur. J. Mech. Solid., 24, 35-45 (2005) · Zbl 1063.74017
[11] Cho, N.-K.; Chen, H., Shakedown, ratchet, and limit analyses of 90° back-to-back pipe bends under cyclic in-plane opening bending and steady internal pressure, Eur. J. Mech. Solid., 67, 231-242 (2018)
[12] Do, H. V.; Nguyen-Xuan, H., Limit and shakedown isogeometric analysis of structures based on Bézier extraction, Eur. J. Mech. Solid., 63, 149-164 (2017) · Zbl 1406.74629
[13] Gokhfeld, D. A.; Charniavsky, O. F., (Sijthoff; Noordhoff, Limit Analysis of Structures at Thermal Cycling (1980), Alphen aan den Rijn: Alphen aan den Rijn The Netherlands) · Zbl 0463.73030
[14] Halphen, B., Elastic perfectly plastic structures with temperature dependent elastic coefficients, Compt. Rendus Mec., 333, 617-621 (2005)
[15] Hasbroucq, S.; Oueslati, A.; de Saxcé, G., Inelastic responses of a two-bar system with temperature-dependent elastic modulus under cyclic thermomechanical loadings, Int. J. Solid Struct., 47, 1924-1932 (2010) · Zbl 1194.74173
[16] Hasbroucq, S.; Oueslati, A.; de Saxcé, G., Analytical study of the asymptotic behavior of a thin plate with temperature-dependent elastic modulus under cyclic thermomechanical loadings, Int. J. Mech. Sci., 54, 95-104 (2012)
[17] Heitzer, M., Statical shakedown analysis with temperature-dependent yield condition, Commun. Numer. Meth. Eng., 20, 835-844 (2004) · Zbl 1061.74009
[18] König, J. A., Shakedown of Elastic-plastic Structures (1987), Elsevier: Elsevier Amsterdam · Zbl 0149.22502
[19] Koiter, W. T., General theorems for elastic-plastic solids, (Sneddon, J. N.; Hill, R., Progress in Solid Mechanics (1960), North-Holland: North-Holland Amsterdam), 167-221 · Zbl 0090.17301
[20] König, J. A., A shakedown theorem for temperature dependent elastic moduli, Bull. Acad. Pol. Sci. Tech., 17, 161-165 (1969)
[21] Liu, Y. H.; Zhang, X. F.; Cen, Z. Z., Lower bound shakedown analysis by the symmetric Galerkin boundary element method, Int. J. Plast., 21, 21-42 (2005) · Zbl 1112.74552
[22] Maier, G., On some issues in shakedown analysis, J. Appl. Mech-T Asme., 68, 799-807 (2001) · Zbl 1110.74577
[23] Melan, E., Zur Plastizität des räumlichen Kontinuums, Ing. Arch., 9, 116-126 (1938) · JFM 64.0840.01
[24] Naghdi, P. M., Stress-strain Relations in Plasticity and Thermoplasticity. Plasticity Proceedings of the Second Symposium on Naval Structural Mechanics, 121-169 (1960)
[25] Nguyen-Xuan, H.; Rabczuk, T.; Nguyen-Thoi, T.; Tran, T. N.; Nguyen-Thanh, N., Computation of limit and shakedown loads using a node-based smoothed finite element method, Int. J. Numer. Meth. Eng., 90, 287-310 (2012) · Zbl 1242.74142
[26] Peigney, M., Shakedown of elastic-perfectly plastic materials with temperature-dependent elastic moduli, J. Mech. Phys. Solid., 71, 112-131 (2014) · Zbl 1328.74022
[27] Peng, H.; Liu, Y.; Chen, H.; Shen, J., Shakedown analysis of engineering structures under multiple variable mechanical and thermal loads using the stress compensation method, Int. J. Mech. Sci., 140, 361-375 (2018)
[28] Polizzotto, C., Shakedown theorems for elastic-plastic solids in the framework of gradient plasticity, Int. J. Plast., 24, 218-241 (2008) · Zbl 1130.74009
[29] Ponter, A. R.S., Shakedown limit theorems for frictional contact on a linear elastic body, Eur. J. Mech. Solid., 60, 17-27 (2016) · Zbl 1406.74513
[30] Ponter, A. R.S.; Carter, K. F., Limit state solutions, based upon linear elastic solutions with a spatially varying elastic modulus, Comput. Meth. Appl. Math., 140, 237-258 (1997) · Zbl 0894.73033
[31] Ponter, A. R.S.; Carter, K. F., Shakedown state simulation techniques based on linear elastic solutions, Comput. Meth. Appl. Math., 140, 259-279 (1997) · Zbl 0891.73021
[32] Ponter, A. R.S.; Chen, H. F., A minimum theorem for cyclic load in excess of shakedown, with application to the evaluation of a ratchet limit, Eur. J. Mech. Solid., 20, 539-553 (2001) · Zbl 1002.74018
[33] Ponter, A. R.S.; Engelhardt, M., Shakedown limits for a general yield condition: implementation and application for a Von Mises yield condition, Eur. J. Mech. Solid., 19, 423-445 (2000) · Zbl 0979.74065
[34] Prager, W., Shakedown in Elastic, Plastic Media Subjected to Cycles of Load and Temperature (1956), Division of Applied Mathematics, Brown University · Zbl 0082.17902
[35] Reinhardt, W., A noncyclic method for plastic shakedown analysis, J. Pressure Vessel Technol., 130, 0312091-0312096 (2008)
[36] Simon, J. W.; Weichert, D., Numerical lower bound shakedown analysis of engineering structures, Comput. Meth. Appl. Math., 200, 2828-2839 (2011) · Zbl 1230.74046
[37] Spiliopoulos, K. V.; Panagiotou, K. D., A residual stress decomposition based method for the shakedown analysis of structures, Comput. Meth. Appl. Math., 276, 410-430 (2014)
[38] Staat, M.; Heitzer, M., Numerical Methods for Limit and Shakedown Analysis Deterministic and Probabilistic Problems, 1-306 (2003), NIC-Directors
[39] Stein, E.; Zhang, G.; Huang, Y., Modeling and computation of shakedown problems for nonlinear hardening materials, Comput. Meth. Appl. Math., 103, 247-272 (1993) · Zbl 0793.73097
[40] Vu, D. K.; Staat, M., Shakedown analysis of structures made of materials with temperature-dependent yield stress, Int. J. Solid Struct., 44, 4524-4540 (2007) · Zbl 1122.74008
[41] Weichert, D.; Ponter, A., A historical view on shakedown theory, (Stein, E., The History of Theoretical, Material and Computational Mechanics-mathematics Meets Mechanics and Engineering (2014), Springer), 169-193
[42] Yan, A. M.; Hung, N. D., Kinematical shakedown analysis with temperature-dependent yield stress, Int. J. Numer. Meth. Eng., 50, 1145-1168 (2001) · Zbl 1047.74071
[43] Zarka, J., Direct analysis of elastic-plastic structures with ‘overlay’ materials during cyclic loading, Int. J. Numer. Meth. Eng., 15, 225-235 (1980) · Zbl 0437.73021
[44] Zouain, N.; Borges, L.; Silveira, J. L., An algorithm for shakedown analysis with nonlinear yield functions, Comput. Meth. Appl. Math., 191, 2463-2481 (2002) · Zbl 1054.74064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.