×

Sections of elliptic surfaces and Zariski pairs for conic-line arrangements via dihedral covers. (English) Zbl 1300.14018

The author approaches the existence problem of a dihedral cover of Hirzebruch surfaces \(\Sigma_d\) with prescribed branch curves via the theory of elliptic surfaces and Mordell-Weil lattices. The elliptic surface \(S\) appears as a double cover of \(\Sigma_d\) and the potential branch curves on \(S\) are produced as sections of \(S/\mathbb{P}^1\) by the group operations on the Mordell-Weil groups.
The setting is as follows. Let \(\pi: X\rightarrow Y\) be a Galois cover with \(\mathrm{Gal}(\pi)\simeq D_{2p}\), the dihedral group of order \(2p\). The cover \(\pi\) is called elliptic if (i) the canonical double cover \(f: D(X/Y)\rightarrow Y\) corresponding to the index two subgroup of \(\mathrm{Gal}(\pi)\) has a structure of a relatively minimal elliptic surface \(D(X/Y)=S\rightarrow \mathbb{P}^1\) with a section, and (ii) the covering transformation \(\sigma_f\) of \(f\) coincides with the fiberwise inversion of the elliptic surface \(S\). Note that then \(Y\) is ruled over \(\mathbb{P}^1\), hence is a blowup \(\widehat{\Sigma_d}\) of a Hirzebruch surface \(\Sigma_d\) for some even \(d\).
Under these notation, Theorem 3.3 is concisely as follows. Let \(p\) be an odd prime which does not divide the order of the torsion subgroup of \(\mathrm{MW}(S)\). Let \(s_1,s_2\in \mathrm{MW}(S)\) be sections such that \(s_i\) are not \(p\)-divisible in the Mordell-Weil group \(\mathrm{MW}(S)\). Then there exists a \(D_{2p}\)-cover \(X_{p}\rightarrow \widehat{\Sigma_d}\) such that the horizontal part of the branch of \(X_p/S\) is \(s_1+s_2+\sigma_f(s_1+s_2)\) if and only if the images \(\overline{s}_i\in \mathrm{MW}(S)\otimes \mathbb{Z}/p\mathbb{Z}\) are linearly dependent.
As an application, the author considers the case \(S\) is rational and constructs a Zariski pair of conic-line arrangement of degree \(7\).

MSC:

14E20 Coverings in algebraic geometry
14J27 Elliptic surfaces, elliptic or Calabi-Yau fibrations
14J26 Rational and ruled surfaces

References:

[1] M. Amram, D. Garber and M. Teicher, Fundamental groups of tangent conic-line arrangements with singularities up to order \(6\), Math. Z., 256 (2007), 837-870. · Zbl 1129.57001 · doi:10.1007/s00209-007-0109-4
[2] M. Amram, D. Garber and M. Teicher, On the fundamental group of the complement of two tangent conics and an arbitrary number of tangent lines, arXive:math/0612346v2. · Zbl 1276.14033
[3] M. Amram, M. Teicher and A. M. Uludag, Fundamental groups of some quadric-line arrangements, Topology Appl., 130 (2003), 159-173. · Zbl 1023.52008 · doi:10.1016/S0166-8641(02)00218-3
[4] E. Artal and J. Carmona, Zariski pairs, fundamental groups and Alexander polynomials, J. Math. Soc. Japan, 50 (1998), 521-543. · Zbl 0904.14011 · doi:10.2969/jmsj/05030521
[5] E. Artal, J. Carmona, J. I. Cogolludo and M. Á. Marco, Topology and combinatorics of real line arrangements, Compos. Math., 141 (2005), 1578-1588. · Zbl 1085.32012 · doi:10.1112/S0010437X05001405
[6] E. Artal, J. Carmona, J. I. Cogolludo and M. Á. Marco, Invariants of combinatorial line arrangements and Rybnikov’s example, In: Singularity Theory and Its Applications, Sapporo, 2003, (eds. S. Izumiya, G. Ishikawa, H. Tokunaga, I. Shimada and T. Sano), Adv. Stud. Pure Math., 43 , Math. Soc. Japan, Tokyo, 2007, pp.,1-34. · Zbl 1135.32025
[7] E. Artal Bartolo, J. I. Cogolludo and H. Tokunaga, A survey on Zariski pairs, In: Algebraic Geometry in East Asia-Hanoi 2005, (eds. K. Konno and V. Nguyen-Khac), Adv. Stud. Pure Math., 50 , Math. Soc. Japan, Tokyo, 2008, pp.,1-100.
[8] W. P. Barth, K. Hulek, C. A. M. Peters and A. Van de Ven, Compact complex surfaces, 2nd Enlarged Edition, Ergeb. Math. Grenzgeb. (3), 4 , Springer-Verlag, 2004.
[9] M. Friedman and D. Garber, On the structure of conjugation-free fundamental groups of conic-line arrangements, arXive:math/1111.5291. · Zbl 1348.32013
[10] E. Horikawa, On deformation of quintic surfaces, Invent. Math., 31 (1975), 43-85. · Zbl 0317.14018 · doi:10.1007/BF01389865
[11] K. Kodaira, On compact analytic surfaces II, III, Ann. of Math., 77 (1963), 563-626; 78 (1963), 1-40. · Zbl 0118.15802 · doi:10.2307/1970500
[12] R. Miranda, The moduli of Weierstrass fibrations over \({\mathbb P}^1\), Math. Ann., 255 (1981), 379-394. · Zbl 0438.14023 · doi:10.1007/BF01450711
[13] R. Miranda, The Basic Theory of Elliptic Surfaces, Dottorato Ric. Mat., ETS Editrice, Pisa, 1989. · Zbl 0744.14026
[14] R. Miranda and U. Persson, On extremal rational elliptic surfaces, Math. Z., 193 (1986), 537-558. · Zbl 0652.14003 · doi:10.1007/BF01160474
[15] M. Namba and H. Tsuchihashi, On the fundamental groups of Galois covering spaces of the projective plane, Geom. Dedicata, 104 (2004), 97-117. · Zbl 1047.14010 · doi:10.1023/B:GEOM.0000022858.29934.42
[16] K. Oguiso and T. Shioda, The Mordell-Weil lattice of a rational elliptic surface, Comment. Math. Univ. St. Paul., 40 (1991), 83-99. · Zbl 0757.14011
[17] M. Oka, Zariski pairs on sextics. II, In: Singularity theory, Marseille, 2005, (eds. D. Chéniot, N. Dutertre, C. Murolo, D. Trotman, and A. Pichon), World Sci. Publ., Hackensack, NJ, 2007, 837-863. · Zbl 1125.14013
[18] U. Persson, Configurations of Kodaira fibers on rational elliptic surfaces, Math. Z., 205 (1990), 1-47. · Zbl 0722.14021 · doi:10.1007/BF02571223
[19] G. L. Rybnikov, On the fundamental group of the complement of a complex hyperplane arrangement, Funct. Anal. Appl., 45 (2011), 137-148. · Zbl 1271.14085 · doi:10.4213/faa3025
[20] T. Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul., 39 (1990), 211-240. · Zbl 0725.14017
[21] H. Tokunaga, On dihedral Galois coverings, Canad. J. Math., 46 (1994), 1299-1317. · Zbl 0857.14009 · doi:10.4153/CJM-1994-074-4
[22] H. Tokunaga, Dihedral coverings branched along maximizing sextics, Math. Ann., 308 (1997), 633-648. · Zbl 0877.14011 · doi:10.1007/s002080050094
[23] H. Tokunaga, Some examples of Zariski pairs arising from certain elliptic \(K3\) surfaces, Math. Z., 227 (1998), 465-477. · Zbl 0923.14012 · doi:10.1007/PL00004386
[24] H. Tokunaga, Some examples of Zariski pairs arising from certain elliptic \(K3\) surfaces. II: Degtyarev’s conjecture, Math. Z., 230 (1999), 389-400. · Zbl 0930.14018 · doi:10.1007/PL00004697
[25] H. Tokunaga, Dihedral covers and an elementary arithmetic on elliptic surfaces, J. Math. Kyoto Univ., 44 (2004), 55-270. · Zbl 1084.14019
[26] H. Tokunaga, Two-dimensional versal \(G\)-covers and Cremona embeddings of finite groups, Kyushu J. Math., 60 (2006), 439-456. · Zbl 1113.14014 · doi:10.2206/kyushujm.60.439
[27] H. Tokunaga, Some sections on rational elliptic surfaces and certain special conic-quartic configurations, Kodai Math. J., 35 (2012), 78-104. · Zbl 1319.14044 · doi:10.2996/kmj/1333027255
[28] H. Tsuchihashi, Galois coverings of projective varieties for dihedral and symmetric groups, Kyushu J. Math., 57 (2003), 411-427. · Zbl 1072.14018 · doi:10.2206/kyushujm.57.411
[29] J.-G. Yang and J. Xie, Discriminantal groups and Zariski pairs of sextic curves, Geom. Dedicata, 158 (2012), 235-259. · Zbl 1271.14027 · doi:10.1007/s10711-011-9630-z
[30] O. Zariski, On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math., 51 (1929), 305-328. · JFM 55.0806.01 · doi:10.2307/2370712
[31] O. Zariski, The topological discriminant group of a Riemann surface of genus \(p\), Amer. J. Math., 59 (1937), 335-358. · Zbl 0016.32502 · doi:10.2307/2371416
[32] O. Zariski, On the purity of the branch locus of algebraic functions, Proc. Nat. Acad. U.S.A., 44 (1958), 791-796. · Zbl 0087.35703 · doi:10.1073/pnas.44.8.791
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.