×

Adaptive multi-stage integrators for optimal energy conservation in molecular simulations. (English) Zbl 1422.65447

Summary: We introduce a new adaptive integration approach (AIA) to be used in a wide range of molecular simulations. Given a simulation problem and a step size, the method automatically chooses the optimal scheme out of an available family of numerical integrators. Although we focus on two-stage splitting integrators, the idea may be used with more general families. In each instance, the system-specific integrating scheme identified by our approach is optimal in the sense that it provides the best conservation of energy for harmonic forces. The AIA method has been implemented in the BCAM-modified GROMACS software package. Numerical tests in molecular dynamics and hybrid Monte Carlo simulations of constrained and unconstrained physical systems show that the method successfully realizes the fail-safe strategy. In all experiments, and for each of the criteria employed, the AIA is at least as good as, and often significantly outperforms the standard Verlet scheme, as well as fixed parameter, optimized two-stage integrators. In particular, for the systems where harmonic forces play an important role, the sampling efficiency found in simulations using the AIA is up to 5 times better than the one achieved with other tested schemes.

MSC:

65P10 Numerical methods for Hamiltonian systems including symplectic integrators
65C05 Monte Carlo methods
70H05 Hamilton’s equations

Software:

Gromacs; GSHMC

References:

[1] Blanes, S.; Casas, F.; Sanz-Serna, J. M., Numerical integrators for the Hybrid Monte Carlo method, SIAM J. Sci. Comput., 36, 4, A1556-A1580 (2014) · Zbl 1312.65209
[2] Duane, S.; Kennedy, A. D.; Pendleton, B. J.; Roweth, D., Hybrid Monte Carlo, Phys. Lett. B, 195, 216-222 (1987)
[3] Horowitz, A. M., A generalized guided Monte Carlo algorithm, Phys. Lett. B, 268, 247-252 (1991)
[4] Kennedy, A. D.; Pendleton, B., Cost of the generalised hybrid Monte Carlo algorithm for free field theory, Nucl. Phys. B, 607, 456-510 (2001) · Zbl 0969.81639
[5] Sanz-Serna, J. M., Markov chain Monte Carlo and numerical differential equations, (Dieci, L.; Guglielmi, N., Current Challenges in Stability Issues for Numerical Differential Equations. Current Challenges in Stability Issues for Numerical Differential Equations, Lect. Notes Math., vol. 2082 (2014), Springer), 39-88 · Zbl 1318.65007
[6] McLachlan, R. I., On the numerical integration of ordinary differential equations by symmetric composition methods, J. Sci. Comput., 16, 151-168 (1995) · Zbl 0821.65048
[7] Berendsen, H. J.C.; van der Spoel, D.; van Drunen, R., GROMACS: a message-passing parallel molecular dynamics implementation, Comput. Phys. Commun., 91, 43-56 (1995)
[8] Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E., GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory Comput., 4, 3, 435-447 (2008)
[9] Escribano, B.; Akhmatskaya, E.; Mujika, J. I., Combining stochastic and deterministic approaches within high efficiency molecular simulations, Cent. Eur. J. Math., 11, 4, 787-799 (2013) · Zbl 1264.82077
[10] Fernández-Pendás, M.; Escribano, B.; Radivojević, T.; Akhmatskaya, E., Constant pressure hybrid Monte Carlo simulations in GROMACS, J. Mol. Model., 20, 2487 (2014)
[11] Predescu, C.; Lippert, R. A.; Eastwood, M. P.; Ierardi, D.; Xu, H.; Jensen, M. O.; Bowers, K. J.; Gullingsrud, J.; Rendleman, C. A.; Dror, R. O.; Shaw, D. E., Computationally efficient molecular dynamics integrators with improved sampling accuracy, Mol. Phys., 110, 967-983 (2012)
[12] Sanz-Serna, J. M.; Calvo, M. P., Numerical Hamiltonian Problems, Appl. Math. Math. Comput., vol. 7 (1994), Chapman & Hall: Chapman & Hall London · Zbl 0816.65042
[13] Schlick, T., Molecular Modeling and Simulation: An Interdisciplinary Guide (2002), Springer-Verlag: Springer-Verlag New York · Zbl 1011.92019
[14] Skeel, R. D., Integration schemes for molecular dynamics and related applications, (Ainsworth, M.; Levesley, J.; Marletta, M., The Graduate Student’s Guide to Numerical Analysis ’98. The Graduate Student’s Guide to Numerical Analysis ’98, Springer Series in Computational Mathematics, vol. 26 (1999), Springer-Verlag: Springer-Verlag Berlin Heidelberg), 119-176 · Zbl 0938.65150
[15] Skeel, R. D.; Zhang, G.; Schlick, T., A family of symplectic integrators: stability, accuracy, and molecular dynamics applications, J. Sci. Comput., 18, 1, 203-222 (1997) · Zbl 0868.65055
[16] Sanz-Serna, J. M., Two topics in nonlinear stability, (Light, W., Advances in Numerical Analysis, vol. I (1991), Clarendon Press: Clarendon Press Oxford), 147-174 · Zbl 0746.65069
[17] Mandziuk, M.; Schlick, T., Resonance in the dynamics of chemical systems simulated by the implicit midpoint scheme, Chem. Phys. Lett., 237, 525-535 (1995)
[18] Schlick, T.; Mandziuk, M.; Skeel, R. D.; Srinivas, K., Nonlinear resonance artifacts in molecular dynamics simulations, J. Comput. Phys., 140, 1-29 (1998) · Zbl 0905.65084
[19] Mazur, A. K., Common molecular dynamics algorithms revisited: accuracy and optimal time steps of Störmer-Leapfrog integrators, J. Comput. Phys., 136, 2, 354-365 (1997) · Zbl 0886.65123
[20] Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J.C., Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, J. Comput. Phys., 23, 327-341 (1977)
[21] Andersen, H. C., Rattle: a ’velocity’ version of the shake algorithm for molecular dynamics calculations, J. Comput. Phys., 52, 24-34 (1983) · Zbl 0513.65052
[22] Leimkuhler, B. J.; Skeel, R. D., Symplectic numerical integrators in constrained Hamiltonian systems, J. Comput. Phys., 112, 1, 117-125 (1994) · Zbl 0817.65057
[23] Hartmann, C., An ergodic sampling scheme for constrained Hamiltonian systems with applications to molecular dynamics, J. Stat. Phys., 130, 4, 687-711 (2008) · Zbl 1214.82063
[24] Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M. R.; Smith, J. C.; Kasson, P. M.; van der Spoel, D.; Hess, B.; Lindahl, E., GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit, Bioinformatics, 29, 7, 845-854 (2013)
[25] Páll, S.; Abraham, M. J.; Kutzner, C.; Hess, B.; Lindahl, E., Tackling exascale software challenges in molecular dynamics simulations with GROMACS, (Markidis, S.; Laure, E., Solving Software Challenges for Exascale (2015), Springer International Publishing: Springer International Publishing Switzerland), 3-27
[26] Akhmatskaya, E.; Reich, S., GSHMC: an efficient method for molecular simulation, J. Comput. Phys., 227, 4934-4954 (2008) · Zbl 1148.82316
[28] Lippert, R. A.; Bowers, K. J.; Dror, R. O.; Eastwood, M. P.; Gregersen, B. A.; Klepeis, J. L.; Kolossvary, I.; Shaw, D. E., A common, avoidable source of error in molecular dynamics integrators, J. Chem. Phys., 126, Article 046101 pp. (2007)
[29] Bussi, G.; Donadio, D.; Parrinello, M., Canonical sampling through velocity rescaling, J. Chem. Phys., 126, Article 014101 pp. (2007)
[30] Oh, S.; Hori, Y., Development of golden section search driven particle swarm optimization and its application, (SICE-ICASE International Joint Conference (2006)), 2868-2873
[31] Jung, H. J.; Lee, J. Y.; Kim, S. H.; Eu, Y. J.; Shin, S. Y.; Milescu, M.; Swartz, K. J.; Kim, J. L., Solution structure and lipid membrane partitioning of VSTx1, an inhibitor of the KvAP potassium channel, J. Biochem., 44, 16, 6015-6023 (2005)
[32] Bazari, W. L.; Matsudaira, P.; Wallek, M.; Smeal, T.; Jakes, R.; Ahmed, Y., Villin sequence and peptide map identify six homologous domains, Proc. Natl. Acad. Sci. USA, 85, 14, 4986-4990 (1988)
[33] McKnight, C. J.; Matsudaira, P. T.; Kim, P. S., NMR structure of the 35-residue villin headpiece subdomain, Nat. Struct. Biol., 4, 4, 180-184 (1997)
[34] Wallace, E.; Sansom, M., Carbon nanotube/detergent interactions via coarse-grained molecular dynamics, Nano Lett., 7, 7, 1923-1928 (2007)
[35] Shih, A.; Arkhipov, A.; Freddolino, P.; Schulten, K., Coarse grained protein-lipid model with application to lipoprotein particles, J. Phys. Chem. B, 110, 8, 3674-3684 (2006)
[36] van der Spoel, D.; Lindahl, E., Brute-force molecular dynamics simulations of villin headpiece: comparison with NMR parameters, J. Phys. Chem. B, 107, 40, 11178-11187 (2003)
[37] Beskos, A.; Pillai, N.; Roberts, G.; Sanz-Serna, J. M.; Stuart, A., Optimal tuning of the hybrid Monte Carlo-algorithm, Bernoulli, 19, 5A, 1501-1534 (2013) · Zbl 1287.60090
[38] Wee, C. L.; Sansom, M. S.; Reich, S.; Akhmatskaya, E., Improved sampling for simulations of interfacial membrane proteins: application of generalized shadow hybrid Monte Carlo to a peptide toxin/bilayer system, J. Phys. Chem. B, 112, 18, 5710-5717 (2008)
[39] Bou-Rabee, N.; Sanz-Serna, J. M., Randomized Hamiltonian Monte Carlo, submitted · Zbl 1373.60129
[40] Allen, M. P.; Tildesley, D. J., Computer Simulation of Liquids (1989), Clarendon Press: Clarendon Press New York · Zbl 0703.68099
[41] Geyer, C. J., Practical Markov Chain Monte Carlo, Stat. Sci., 7, 4, 473-483 (1992)
[42] Berendsen, H. J.C.; Potsma, J. P.M.; van Gunsteren, W. F.; Hermans, J., Interaction models for water in relation to protein hydration, (Pullman, B., Intermolecular Forces. Intermolecular Forces, The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol. 14 (1981), Springer: Springer Netherlands), 331-342
[43] Tuckerman, M.; Berne, B. J.; Martyna, G. J., Reversible multiple time scale molecular dynamics, J. Chem. Phys., 97, 1990-2001 (1992)
[44] Escribano, B.; Akhmatskaya, E.; Reich, S.; Azpiroz, J. M., Multiple-time-stepping generalized hybrid Monte Carlo methods, J. Comput. Phys., 280, 1, 1-20 (2015) · Zbl 1349.82077
[45] Leimkuhler, B.; Margul, D. T.; Tuckerman, M. E., Stochastic, resonance-free multiple time-step algorithm for molecular dynamics with very large time steps, Mol. Phys., 111, 22-23, 3579-3594 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.