×

Application of lattice Boltzmann method to simulate a pressure-affected electroosmotic pump with hydrophobic thermally-jumped walls and temperature-sensitive operating fluid. (English) Zbl 1524.76297

Summary: The present work attempts to show the accuracy of lattice Boltzmann method (LBM) to study a liquid flow with volumetric forces of electroosmotic and pressure gradient over hydrophobic surfaces. Navier boundary condition, slip velocity and temperature jump are taken into account. The flow has temperature-dependent physical properties and is assumed to be laminar, steady and viscous. Joule heating effects and velocity distribution within channel are studied and verified by comparing the numerically computed slip length with the coefficient of velocity derivative at the wall. The results show that unlike no-slip condition, velocity and temperature magnitude in the middle and near wall regions have approximately the same significant growth. Slip amplifies the effect of fluid properties changes on the wall heat transfer rate; because it increases the temperature derivative at the channel wall.

MSC:

76M28 Particle methods and lattice-gas methods
76W05 Magnetohydrodynamics and electrohydrodynamics
Full Text: DOI

References:

[1] Chai, Z.; Shi, B., Simulation of electroosmotic flow in microchannel with lattice Boltzmann method, Int. Phys. Lett. A, 364, 3, 183-188 (2007) · Zbl 1203.76125
[2] Chai, Z. H.; Shi, B. C.; Zheng, L., Lattice Boltzmann simulation of viscous dissipation in electroosmotic flow in microchannels, Internat. J. Modern Phys. C, 18, 07, 1119-1131 (2007) · Zbl 1200.76146
[3] Char, M. I.; Hsu, W. J., Thermal performance of mixed electroosmotic-pressure driven flows in microtubes with constant wall temperature, Int. Commun. Heat Mass Transfer, 36, 5, 498-502 (2009)
[4] Chen, Q.; Zhou, H.; Jiang, X.; Xu, L.; Li, Q.; Ru, Y., Extension of the improved bounce-back scheme for electrokinetic flow in the lattice Boltzmann method, Entropy, 17, 11, 7406-7419 (2015)
[5] De, A. K., Numerical Modeling of Microscale Mixing using Lattice Boltzmann Method (2008), Virginia Polytechnic Institute and State University: Virginia Polytechnic Institute and State University Blacksburg, Virginia, (Ph.D. thesis)
[6] De, S.; Bhattacharyya, S.; Hardt, S., Electroosmotic flow in a slit nanochannel with superhydrophobic walls, Microfluid. Nanofluid., 19, 6, 1465-1476 (2015)
[7] Derakhshan, S.; Adibi, I.; Sarrafha, H., Numerical study of electroosmotic micropump using lattice Boltzmann method, Comput. & Fluids, 114, 232-241 (2015) · Zbl 1390.76707
[8] Eijkel, J. C.T., Liquid slip in micro-and nanofluidics: recent research and its possible implications, Lab Chip, 7, 3, 299-301 (2007)
[9] Guo, Z.; Zhao, T. S.; Shi, Y., A lattice Boltzmann algorithm for electroosmotic flows in microfluidic devices, J. Chem. Phys., 122, 14, Article 144907 pp. (2005)
[10] Joly, L.; Ybert, C.; Trizac, E.; Bocquet, L., Liquid friction on charged surfaces: From hydrodynamic slippage to electrokinetics, J. Chem. Phys., 125, 20, Article 204716 pp. (2008)
[11] Kim, K.; Kwak, H. S.; Song, T. H., A numerical model for simulating electroosmotic micro-and nanochannel flows under non-Boltzmann equilibrium, Fluid Dyn. Res., 43, 4, Article 041401 pp. (2011) · Zbl 1426.76388
[12] Li, B.; Kwok, D. Y., A lattice Boltzmann model for electrokinetic microchannel flow of electrolyte solution in the presence of external forces with the Poisson-Boltzmann equation, Int. J. Heat Mass Transfer, 46, 22, 4235-4244 (2003) · Zbl 1065.76165
[13] Lin, T. Y.; Chen, C. L., Analysis of electroosmotic flow with periodic electric and pressure fields via the lattice Poisson-Boltzmann method, Appl. Math. Model., 37, 5, 2816-2829 (2013) · Zbl 1351.76240
[14] Masilamani, K.; Ganguly, S.; Feichtinger, C.; Rüde, U., Hybrid lattice-Boltzmann and finite-difference simulation of electroosmotic flow in a microchannel, Fluid Dyn. Res., 43, 2, Article 025501 pp. (2011) · Zbl 1317.76066
[15] Mohamad, A. A., Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes (2011), Springer Science & Business Media · Zbl 1247.80003
[16] Mohammadipoor, O. R.; Niazmand, H.; Mirbozorgi, S. A., Numerical simulation of electroosmotic flow in flat microchannels with lattice Boltzmann method, Arab. J. Sci. Eng., 39, 2, 1291-1302 (2014)
[17] Ngoma, G. D.; Erchiqui, F., Heat flux and slip effects on liquid flow in a microchannel, Int. J. Therm. Sci., 46, 11, 1076-1083 (2007)
[18] Ribetto, L., Microfabricated All-Around-Electrode AC Electroosmotic Micropump (2012), École Polytechnique Fédérale De Lausanne
[19] Sadeghi, M.; Sadeghi, A.; Saidi, M. H., Electroosmotic flow in hydrophobic microchannels of general cross section, J. Fluids Eng., 138, 3, Article 031104 pp. (2016)
[20] Shi, Y.; Zhao, T. S.; Guo, Z. L., Lattice Boltzmann simulation of thermal electroosmotic flows in micro/nanochannels, J. Comput. Theor. Nanosci., 5, 2, 236-246 (2008)
[21] Shi, Y.; Zhao, T. S.; Guo, Z., Simplified model and lattice Boltzmann algorithm for microscale electroosmotic flows and heat transfer, Int. J. Heat Mass Transfer, 51, 3, 586-596 (2008) · Zbl 1133.80006
[22] Shu, J. J.; Tao, J. B.M.; Chun, W. K., A new model for temperature jump at a fluid-solid interface, PLoS One, 11, 10, Article e0165175 pp. (2016)
[23] Tandon, V.; Kirby, B. J., Zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 2. Slip and interfacial water structure, Electrophoresis, 29, 5, 1102-1114 (2008)
[24] Tang, G. H.; He, Y. L.; Tao, W. Q., Numerical analysis of mixing enhancement for micro-electroosmotic flow, J. Appl. Phys., 107, 10, Article 104906 pp. (2010)
[25] Tang, G. H.; Li, X. F.; Tao, W. Q., Microannular electroosmotic flow with the axisymmetric lattice Boltzmann method, J. Appl. Phys., 108, 11, Article 114903 pp. (2010)
[26] Tang, G. H.; Li, Z.; Wang, J. K.; He, Y. L.; Tao, W. Q., Electroosmotic flow and mixing in microchannels with the lattice Boltzmann method, J. Appl. Phys., 100, 9, Article 094908 pp. (2006)
[27] Tian, F.; Li, B.; Kwok, D. Y., Lattice Boltzmann simulation of electroosmotic flows in micro-and nanochannels, (MEMS, NANO and Smart Systems, 2004. ICMENS 2004. Proceedings. 2004 International Conference on (2004), IEEE: IEEE Los Alamitos, California), 294-299
[28] Wang, J.; Wang, M.; Li, Z., Lattice Boltzmann simulations of mixing enhancement by the electroosmotic flow in microchannels, Modern Phys. Lett. B, 19, 28n29, 1515-1518 (2005) · Zbl 1096.76044
[29] Wang, J.; Wang, M.; Li, Z., Lattice Poisson-Boltzmann simulations of electroosmotic flows in microchannels, J. Colloid Interface Sci., 296, 2, 729-736 (2006)
[30] Wang, J.; Wang, M.; Li, Z., Lattice evolution solution for the nonlinear Poisson-Boltzmann equation in confined domains, Commun. Nonlinear Sci. Numer. Simul., 13, 3, 575-583 (2008) · Zbl 1155.35419
[31] Yang, X.; Shi, B.; Chai, Z.; Guo, Z., A coupled lattice Boltzmann method to solve Nernst-Planck model for simulating electroosmotic flows, J. Sci. Comput., 61, 1, 222-238 (2014) · Zbl 1299.76206
[32] Zou, Q.; He, X., On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Phys. Fluids, 9, 6, 1591-1598 (1997) · Zbl 1185.76873
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.