×

Approximating the solutions of differential inclusions driven by measures. (English) Zbl 1440.34005

The paper focuses on measure differential inclusions of the form \[ \mathrm{d}x(t)\in F(t,x(t))\mathrm{d}\mu(t),\quad t\in[0,1], \] where \(F\) is defined on \([0,1]\times\mathbb R^d\), its values are compact convex subsets of \(\mathbb R^d\), and \(\mu\) is a Stieltjes measure generated by a left-continuous nondecreasing function. A solution of the inclusion is a function \(x:[0,1]\to\mathbb R^d\) for which there exists a \(g:[0,1]\to\mathbb R^d\) such that \(g(t)\in F(t,x(t))\) \(\mu\)-almost everywhere in \([0,1]\), and \[ x(t)=x(0)+\int_0^t g(s)\,\mathrm{d}\mu(s),\quad t\in[0,1]. \] The main results are a global existence theorem yielding the existence of a bounded variation solution, and two theorems dealing with continuous dependence of solutions with respect to the choice of the measure \(\mu\).
The results are based on the concept of a bounded \(\varepsilon\)-variation introduced in [D. Fraňková, Math. Bohem. 116, No. 1, 20–59 (1991; Zbl 0724.26009)]. In particular, it is assumed that the right-hand side \(F\) satisfies a condition that corresponds to bounded \(\varepsilon\)-variation for multifunctions.

MSC:

34A06 Generalized ordinary differential equations (measure-differential equations, set-valued differential equations, etc.)
34A60 Ordinary differential inclusions
26A45 Functions of bounded variation, generalizations
28B20 Set-valued set functions and measures; integration of set-valued functions; measurable selections
34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations
26A42 Integrals of Riemann, Stieltjes and Lebesgue type

Citations:

Zbl 0724.26009
Full Text: DOI

References:

[1] Aubin, J-P; Frankowska, H., Set-Valued Analysis (1990), Boston: Birkhäuser, Boston · Zbl 0713.49021
[2] Aye, Kk; Lee, Py, The dual of the space of functions of bounded variations, Math. Bohem., 131, 1-9 (2006) · Zbl 1112.26008
[3] Belov, Sa; Chistyakov, Vv, A selection principle for mappings of bounded variation, J. Math. Anal. Appl., 249, 351-366 (2000) · Zbl 0982.54022 · doi:10.1006/jmaa.2000.6844
[4] Billingsley, P.: Weak conference of measures: application in probability. In: Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No 5, Society for Industrial and Applied Mathematics. Pa, Philadelphia (1971) · Zbl 0271.60009
[5] Brokate, M.; Krejci, P., Duality in the space of regulated functions and the play operator, Math. Z., 245, 667-688 (2003) · Zbl 1055.46023 · doi:10.1007/s00209-003-0563-6
[6] Cao, Y.; Sun, J., On existence of nonlinear measure driven equations involving non-absolutely convergent integrals, Nonlinear Anal. Hybrid Syst., 20, 72-81 (2016) · Zbl 1341.34061 · doi:10.1016/j.nahs.2015.11.003
[7] Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Math. 580. Springer, Berlin (1977) · Zbl 0346.46038
[8] Cichoń, M.; Satco, B., Measure differential inclusions-between continuous and discrete, Adv. Differ. Equ., 56, 18 (2014) · Zbl 1350.49014
[9] Cichoń, M., Satco, B.: On the properties of solutions set for measure driven differential inclusions. In: Discrete and Continuous Dunamical Systems. Special Issue: SI, pp. 287-296 (2015) · Zbl 1339.34033
[10] Cichoń, M.; Satco, B.; Sikorska-Nowak, A., Impulsive nonlocal differential equations through differential equations on time scales, Appl. Math. Comput., 218, 2449-2458 (2011) · Zbl 1247.34138
[11] Cichoń, M.; Cichoń, K.; Satco, B., Measure differential inclusions through selection principles in the space of regulated functions, Mediterr. J. Math., 15, 4, 148 (2018) · Zbl 1406.54012 · doi:10.1007/s00009-018-1192-y
[12] Di Piazza, L.; Marraffa, V.; Satco, B., Closure properties for integral problems driven by regulated functions via convergence results, J. Math. Anal. Appl., 466, 690-710 (2018) · Zbl 1392.26014 · doi:10.1016/j.jmaa.2018.06.012
[13] Federson, M.; Mesquita, Jg; Slavík, A., Measure functional differential equations and functional dynamic equations on time scales, J. Differ. Equ., 252, 3816-3847 (2012) · Zbl 1239.34076 · doi:10.1016/j.jde.2011.11.005
[14] Fraňková, D., Regulated functions, Math. Bohem., 116, 20-59 (1991) · Zbl 0724.26009
[15] Golubov, Bi, On functions of bounded \(p\)-variation, Math. USSR Izv., 2, 799-819 (1968) · Zbl 0183.06003 · doi:10.1070/IM1968v002n04ABEH000669
[16] Halas, Z.; Tvrdý, M., Continuous dependence of solutions of generalized linear differential equations on a parameter, Funct. Differ. Equ., 16, 299-313 (2009) · Zbl 1181.34011
[17] Hönig, Cs, Volterra Stieltjes—Integral Equations (1975), Amsterdam: North-Holland, Amsterdam · Zbl 0345.45002
[18] Hu, S.; Papageorgiou, Ns, Handbook of Multivalued Analysis (1997), Dordrecht: Kluwer Academic Publisher, Dordrecht · Zbl 0887.47001 · doi:10.1007/978-1-4615-6359-4
[19] Krejci, P.; Mortell, M.; O’Malley, R.; Pokrovskii, A.; Sobolev, V., Hysteresis in singularly perturbed problems, Singular Perturbations and Hysteresis, 73-100 (2005), Philadelphia: SIAM, Philadelphia · Zbl 1095.34033 · doi:10.1137/1.9780898717860.ch3
[20] Krejci, P.; Laurencot, P., Generalized variational inequalities, J. Convex Anal., 9, 159-183 (2002) · Zbl 1001.49014
[21] Kurzweil, J., Generalized ordinary differential equations and continuous dependence on a parameter, Czechoslov. Math. J., 7, 418-449 (1957) · Zbl 0090.30002
[22] Miller, B.; Rubinovitch, Ey, Impulsive Control in Continuous and Discrete-Continuous Systems (2003), Dordrecht: Kluwer Academic Publishers, Dordrecht · Zbl 1065.49022 · doi:10.1007/978-1-4615-0095-7
[23] Monteiro, Ga; Tvrdý, M., Generalized linear differential equations in a Banach space: continuous dependence on a paramete, Discrete Contin. Dyn. Syst., 33, 283-303 (2013) · Zbl 1268.45009
[24] Monteiro, Ga; Slavik, A.; Tvrdý, M., Kurzweil-Stieltjes Integral: Theory and Applications, Series in Real Analysis (2018), Singapore: World-Scientific, Singapore · Zbl 1437.28001 · doi:10.1142/9432
[25] Satco, B., Continuous dependence results for set-valued measure differential problems, Electron. J. Qual. Theory Differ. Equ., 79, 1-15 (2015) · Zbl 1349.34051 · doi:10.14232/ejqtde.2015.1.79
[26] Schwabik, Š., Generalized Ordinary Differential Equations (1992), Singapore: World Scientific, Singapore · Zbl 0781.34003 · doi:10.1142/1875
[27] Schwabik, Š.; Tvrdý, M.; Vejvoda, O., Differential and Integral Equations. Boundary Problems and Adjoints (1979), Dordrecht: Praha, Dordrecht · Zbl 0417.45001
[28] Serfozo, R., Convergence of Lebesgue integrals with varying measures, Sankhya Ser. A, 44, 3, 380-402 (1982) · Zbl 0568.28005
[29] Sesekin, An; Zavalishchin, St, Dynamic Impulse Systems (1997), Dordrecht: Kluwer Academic, Dordrecht · Zbl 0880.46031
[30] Silva, Gn; Vinter, Rb, Measure driven differential inclusions, J. Math. Anal. Appl., 202, 727-746 (1996) · Zbl 0877.49004 · doi:10.1006/jmaa.1996.0344
[31] Tvrdý, M., Differential and integral equations in the space of regulated functions, Membr. Differ. Equ. Math. Phys., 25, 1-104 (2002) · Zbl 1081.34504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.