×

Higher accuracy order in differentiation-by-integration. (English) Zbl 1523.65030

Summary: In this text explicit forms of several higher precision order kernel functions (to be used in the differentiation-by-integration procedure) are given for several derivative orders. Also, a system of linear equations is formulated which allows to construct kernels with an arbitrary precision for an arbitrary derivative order. A computer study is realized and it is shown that numerical differentiation based on higher precision order kernels performs much better (w.r.t. errors) than the same procedure based on the usual Legendre-polynomial kernels. Presented results may have implications for numerical implementations of the differentiation-by-integration method.

MSC:

65D25 Numerical differentiation
26A24 Differentiation (real functions of one variable): general theory, generalized derivatives, mean value theorems

References:

[1] N. Burch, P.E. Fishback and R. Gordon. The least-squares property of the Lanczos derivative. Mathematics Magazine, 78(5):368-378, 2005. https://doi.org/10.2307/30044192. · Zbl 1086.65015 · doi:10.2307/30044192
[2] N. Cioranescu. La généralisation de la première formule de la moyenne. Enseign. Math., 37:292-302, 1938. · JFM 64.1019.04
[3] E. Diekema. The fractional orthogonal derivative. Mathematics, 3:273-298, 2015. https://doi.org/10.3390/math3020273. · Zbl 1318.33016 · doi:10.3390/math3020273
[4] E. Diekema. The fractional orthogonal difference with applications. Mathematics, 3(2):487-509, 2015. https://doi.org/10.3390/math3020487. · Zbl 1318.33017 · doi:10.3390/math3020487
[5] E. Diekema. The fractional orthogonal derivative for functions of one and two variables. PhD thesis, 2018. Available from Internet: https://pure.uva.nl/ ws/files/29401750/Thesis.pdf.
[6] E. Diekema and T.H. Koornwinder. Differentiation by integration using orthog-onal polynomials, a survey. Journal of Approximation Theory, 164(5):637-667, 2012. https://doi.org/10.1016/j.jat.2012.01.003. · Zbl 1259.65050 · doi:10.1016/j.jat.2012.01.003
[7] J.W. Eaton, D.Bateman, S. Hauberg and R. Wehbring. GNU Octave ver-sion 5.1.0 manual: a high-level interactive language for numerical computations, 2019. Available from Internet: https://www.gnu.org/software/octave/doc/ v5.1.0/.
[8] A.H. Galeana, R.L. Vázquez, J.L.-Bonilla and L.-I. Pişcoran. On the Cioranescu -(Haslam -Jones) -Lanczos generalized derivative. Global Journal of Advanced Researchon Classical and Modern Geometries, 3(1):44-99, 2014.
[9] C.W. Groetsch. Lanczos’ generalized derivative. The American Mathematical Monthly, 105(4):320-326, 1998. https://doi.org/10.1080/00029890.1998.12004888. · Zbl 0927.26003 · doi:10.1080/00029890.1998.12004888
[10] D.L. Hicks and L.M. Liebrock. Lanczos’ generalized derivative: Insights and applications. Applied Mathematics and Computation, 112(1):63-73, 2000. https://doi.org/10.1016/S0096-3003(99)00048-X. · Zbl 1023.65016 · doi:10.1016/S0096-3003(99)00048-X
[11] X. Huang, Ch. Wu and J. Zhou. Numerical differentiation by integration. Mathe-matics of Computation, 83(286):789-807, 2014. https://doi.org/10.1090/S0025-5718-2013-02722-6. · Zbl 1298.65035 · doi:10.1090/S0025-5718-2013-02722-6
[12] C. Lanczos. Applied analysis. Prentice-Hall Mathematics, Englewood Cliffs, N.J., 1956. · Zbl 0111.12403
[13] A. Liptaj. Maximal generalization of Lanczos’ derivative using one-dimensional integrals. arXiv e-prints, p. arXiv:1906.04921, June 2019.
[14] D.-Y. Liu, O. Gibaru and W. Perruquetti. Differentiation by integration with Jacobi polynomials. Journal of Computational and Applied Mathematics, 235(9):3015-3032, 2011. https://doi.org/10.1016/j.cam.2010.12.023. · Zbl 1214.65011 · doi:10.1016/j.cam.2010.12.023
[15] D.-Y. Liu, O. Gibaru, W. Perruquetti and T.-M. Laleg-Kirati. Frac-tional order differentiation by integration and error analysis in noisy envi-ronment. IEEE Transactions on Automatic Control, 60(11):2945-2960, 2015. https://doi.org/10.1109/TAC.2015.2417852. · Zbl 1360.93702 · doi:10.1109/TAC.2015.2417852
[16] Maxima. Maxima, a computer algebra system. version 5.34.1, 2014. Available from Internet: http://maxima.sourceforge.net/.
[17] T.J. McDevitt. Discrete Lanczos derivatives of noisy data. In-ternational Journal of Computer Mathematics, 89(7):916-931, 2012. https://doi.org/10.1080/00207160.2012.666348. · Zbl 1259.65051 · doi:10.1080/00207160.2012.666348
[18] S.K. Rangarajan and S.P. Purushothaman. Lanczos generalized derivative for higher orders. Journal of Computational and Applied Mathematics, 177(2):461-465, 2005. https://doi.org/10.1016/j.cam.2004.10.016. · Zbl 1067.65025 · doi:10.1016/j.cam.2004.10.016
[19] A. Savitzky and M.J.E. Golay. Smoothing and differentiation of data by sim-plified least squares procedures. Analytical Chemistry, 36(8):1627-1639, 1964. https://doi.org/10.1021/ac60214a047. · doi:10.1021/ac60214a047
[20] J. Shen. On the generalized “Lanczos” generalized deriva-tive”. The American Mathematical Monthly, 106(8):766-768, 1999. https://doi.org/10.1080/00029890.1999.12005116. · Zbl 1031.26008 · doi:10.1080/00029890.1999.12005116
[21] G.R.P. Teruel. A new class of generalized Lanczos derivatives. Palestine Journal of Mathematics, 7(1):211-221, 2018. · Zbl 1375.26011
[22] Z. Wang and R. Wen. Numerical differentiation for high orders by an integration method. Journal of Computational and Applied Mathematics, 234(3):941-948, 2010. https://doi.org/10.1016/j.cam.2010.01.056. · Zbl 1188.65021 · doi:10.1016/j.cam.2010.01.056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.